ipen

PLANO DE TRABALHO

PROJETO PARA BOLSA PÓS-DOUTORADO – EDITAL 6

Nome do(a) Bolsista: Gleice Conceição Mendonça Germano

Código do Projeto vinculado: 2020.06.IPEN.44

DESCRIÇÃO DO PROJETO

Título do Projeto

Diagnostico e caracterização de amostras biologicas por espectrcopia FTIR

Prazo Execução (meses): 24 meses

Objetivo Geral

Os principais objetivos do trabalho serão desenvolver espectroscopia micro-FTIR (e Raman) com análise multivariada, quimiométrica e/ou de aprendizado de máquina para análise de imagens de alto rendimento.

Objetivos Específicos

Os especificos desse projeto é caracterizar sistemas biológicos via micro-FTIR. Desenvolver um processamento robusto de dados para transformar hipercubos no infravermelho em informações (bio)químicas do sistema, alem disso pretende-se integrar dados de imagens no infravermelho e Raman. Em paralelo a isso pretende investigar a relação entre a não linearidade óptica e os diferentes tipos de câncer de mama.

Palavras-chave

- 1 FTIR
- 2 Óptica Não Linear
- 3 Câncer de mama
- 4 Deep learning.
- 5 Diagnóstico

Metas Físicas

- 1 Revisão e acompanhar a literatura
- 2 Aquisição de dados a partir do FTIR
- 3 Pré-Processamento e Processamento
- 4 -Montagem de experimental Z-scan e Medição das amostras
- 5 Divulgação dos resultados e Escrita do artigo científico

ipen

PLANO DE TRABALHO

PROJETO PARA BOLSA PÓS-DOUTORADO – EDITAL 6

Justificativa Resumida:

Esse projeto tem por justificativa propor uma alternativa aos metodos de diagnóstico tradicionais de câncer de mama, que atualmemente é baseada em biópsia de tecido, coloração química e/ou coloração e exame do tecido por um patologista. A alternativa proposta é baseada no processamento de imagens de FTIR, que demostrou excelente potencial para analises quantitativa à histologia tradicional. alem de propor uma aprimoramento no processamento de dados

CRONOGRAMA FÍSICO

META FÍSICA 1 - Revisão e acompanhar a literatura				
ATIVIDADES:	INDICADOR FÍSICO DE EXECUÇÃO			
			Fim	
Acompanhar regurlamente o que se tem publicado na Area de pesquisa durante todo o projeto	seminario interno sobre analise critica de literatura	1	24	

META FÍSICA: 2 - Aquisição de dados a partir do FTIR			
ATIVIDADES:	INDICADOR FÍSICO DE EXECUÇÃO		
Realizar medidas por meio um espectrômetro Cary	Conclusao das etapas de	Inicio 3	17
660 FTIR e um Cary 620 FTIR microscópio	,		
	Obtenção dos espectros e imagens hiperespectrais	5	25

META FÍSICA: 3 - Pré-Processamento e Processamen	TO .		
ATIVIDADES:	INDICADOR FÍSICO DE EXECUÇÃO	Dura Previ	sta
		Inicio	Fim
Processamento das imagens hiperespectrais por Aprendizado de maquina e inteligencia artificial	Testar as rotinas desenvolvidas e obter diagnostico de doenças e caracterização optica de materiais biologicos	5	25

META FÍSICA: 4 -			
ATIVIDADES:	INDICADOR FÍSICO DE EXECUÇÃO	Duração Prevista	
		Inicio	Fim
	preparação da montagem de Zscan		11

PLANO DE TRABALHO

PROJETO PARA BOLSA PÓS-DOUTORADO – EDITAL 6

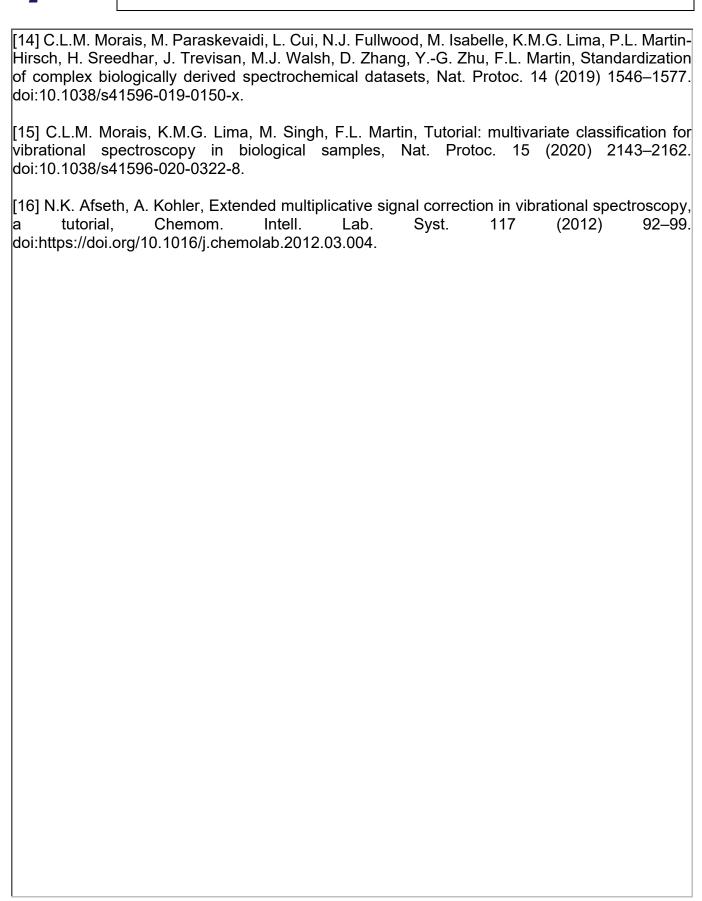
META FÍSICA: 5 -			
ATIVIDADES:	INDICADOR FÍSICO DE EXECUÇÃO	Duração Prevista	
		Inicio	Fim
Divulgação dos resultados e Escrita do artigo científico	Submissão do trabalho para anais e congresso	19	24

para anals e congresso
Resultados Esperados
1 - Refinamento das rotinas em Phyton e Matlab
2 – Dominio dos varios metodos de separação de grupos, por aprendizado de maquina, aprendizado profundo e inteligencia artificial
3 - Submissão de registro de software
4 -Publicação de artigos cientificos
5 – Apresentação dos resultados em congresso
6 -
7 -
8 -
9 -
10 -

10		
Grau de Inovação (se houver):		
não se aplica		
' '		

PLANO DE TRABALHO

PROJETO PARA BOLSA PÓS-DOUTORADO – EDITAL 6


Bibliografia:

- [1] Instituto Nacional De Cancer José Alencar Gomes Da Silva, Estimativa 2020: Incidencia de Câncer no Brasil., (n.d.).
- [2] W.H. Organization, Cancer, (n.d.). https://www.who.int/health-topics/cancer#tab=tab_1.
- [3] W.H. Organization, WHO Report on Cancer: setting priorities, investing wisely and providing care for all., (n.d.).
- [4] V. Hanf, R. Kreienberg, Corpus uteri, 2003. doi:10.1007/978-3-662-11496-4 24.
- [5] A. Hennigs, F. Riedel, A. Gondos, P. Sinn, P. Schirmacher, F. Marmé, D. Jäger, H.-U. Kauczor, A. Stieber, K. Lindel, J. Debus, M. Golatta, F. Schütz, C. Sohn, J. Heil, A. Schneeweiss, Prognosis of breast cancer molecular subtypes in routine clinical care: A large prospective cohort study., BMC Cancer. 16 (2016) 734. doi:10.1186/s12885-016-2766-3.
- [6] WHO, Guide to Cancer Guide to cancer early diagnosis, 2017. https://apps.who.int/iris/bitstream/handle/10665/254500/9789241511940eng.pdf;jsessionid=2646A3E30075DB0FCA4A703A481A5494?sequence=1.
- [7] Z. Kos, D.J. Dabbs, Biomarker assessment and molecular testing for prognostication in breast cancer., Histopathology. 68 (2016) 70–85. doi:10.1111/his.12795.
- [8] S. Kalmodia, S. Parameswaran, W. Yang, C.J. Barrow, S. Krishnakumar, Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy: An analytical technique to understand therapeutic responses at the molecular level, Sci. Rep. 5 (2015) 16649. doi:10.1038/srep16649.
- [9] S. Kumar, A. Srinivasan, F. Nikolajeff, Role of Infrared Spectroscopy and Imaging in Cancer Diagnosis., Curr. Med. Chem. 25 (2018) 1055–1072. doi:10.2174/0929867324666170523121314.
- [10] K.-Y. Su, W.-L. Lee, Fourier Transform Infrared Spectroscopy as a Cancer Screening and Diagnostic Tool: A Review and Prospects., Cancers (Basel). 12 (2020). doi:10.3390/cancers12010115.
- [11] T. Matsui, R. Tamoto, A. Iwasa, M. Mimura, S. Taniguchi, T. Hasegawa, T. Sudo, H. Mizuno, J. Kikuta, I. Onoyama, K. Okugawa, M. Shiomi, S. Matsuzaki, E. Morii, T. Kimura, K. Kato, Y. Kiyota, M. Ishii, Nonlinear optics with near-infrared excitation enable real-time quantitative diagnosis of human cervical cancers, Cancer Res. 80 (2020) 3745–3754. doi:10.1158/0008-5472.CAN-20-0348.
- [12] A. Ghader, A.A. Ardakani, H. Ghaznavi, A. Shakeri-Zadeh, S.E. Minaei, S. Mohajer, M.H.M. Ara, Evaluation of nonlinear optical differences between breast cancer cell lines SK-BR-3 and MCF-7; an in vitro study, Photodiagnosis Photodyn. Ther. 23 (2018) 171–175. doi:10.1016/j.pdpdt.2018.06.015.
- [13] M.J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H.J. Butler, K.M. Dorling, P.R. Fielden, S.W. Fogarty, N.J. Fullwood, K.A. Heys, C. Hughes, P. Lasch, P.L. Martin-Hirsch, B. Obinaju, G.D. Sockalingum, J. Sulé-Suso, R.J. Strong, M.J. Walsh, B.R. Wood, P. Gardner, F.L. Martin, Using Fourier transform IR spectroscopy to analyze biological materials, Nat. Protoc. 9 (2014) 1771–1791. doi:10.1038/nprot.2014.110.

ipen

PLANO DE TRABALHO

PROJETO PARA BOLSA PÓS-DOUTORADO – EDITAL 6

