# **ipen**

### PLANO DE TRABALHO

### PROJETO PARA BOLSA PÓS-DOUTORADO – EDITAL 6

Nome do(a) Bolsista: Midilane Sena Medina

Código do Projeto vinculado: 001

## **DESCRIÇÃO DO PROJETO**

Título do Projeto

Pesquisa e desenvolvimento de sensores eletroquímicos para dióxido de carbono

Prazo Execução (meses): 24

#### **Objetivo Geral**

Produzir um dispositivo sensor de dióxido de carbono composto de eletrodos metálicos, eletrólitos compósitos de LAMOX com carbonatos de lítio, sódio e potássio. Avaliar a sensibilidade, o tempo de resposta, a seletividade e a reprodutibilidade

#### **Objetivos Específicos**

Síntese e análise estrutural de pós cerâmicos LAMOX

Preparação e análise estrutural e química de membranas porosas

Impregnação das membranas cerâmicas com mistura eutética de carbonatos

Análise estrutural e química das membranas impregnadas

Análise das membranas impregnadas por espectroscopia de impedância

Análise da força eletromotriz gerada por diferentes teores de CO<sub>2</sub>

Montagem e testes de seletividade, sensibilidade e tempo de vida do sinal de dispositivo sensor

#### Palayras-chave

- 1 Sensor de dióxido de carbono
- 2 membranas cerâmicas
- 3 eletrólitos sólidos
- 4 -
- 5 -

#### **Metas Físicas**

- 1 Síntese e caracterização de pós cerâmicos de LAMOX
- 2 Preparação de membranas porosas
- 3 Impregnação e análise estrutural e elétrica das membranas porosas com composição eutética de carbonatos
- 4 Montagem e análise de dispositivo sensor de CO<sub>2</sub>
- 5 Escrita de relatório e artigo científico



| Justificativa Resumida:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atualmente, a necessidade de desenvolvimento de sensores de dióxido de carbono (CO <sub>2</sub> ) comercialmente viáveis e de alta confiança é importante para minimizar efeitos do gás estufa e o impacto nas mudanças climáticas. Neste projeto, é proposto o uso de eletrólitos sólidos cerâmicos de vanadato de bismuto dopado com titânio e molibdato de lantânio dopado com tungstênio como matriz e compósito cerâmico com composição eutética de carbonatos de lítio, sódio e potássio para obtenção de um sensor eletroquímico para a detecção e quantificação de dióxido de carbono. É a primeira vez que esse compósito é utilizado como meio detector e espera-se obter um sensor de CO <sub>2</sub> sensível, seletivo e reprodutível. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

# **ipen**

## PLANO DE TRABALHO

## PROJETO PARA BOLSA PÓS-DOUTORADO – EDITAL 6

## **CRONOGRAMA FÍSICO**

META FÍSICA 1 - Síntese e caracterização de pós cerâmicos de LAMOX

| ATIVIDADES:                                                         | INDICADOR FÍSICO DE EXECUÇÃO                                                                 | Dura<br>Prev<br>Inicio | ⁄ista |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------|-------|
| Preparação de pós cerâmicos de LAMOX e BiTiVOX pelo método sol-gel. | Obtenção de pó<br>cerâmicos amorfo (PUF)                                                     | 01                     | 07    |
| Análise térmogravimétrica do PUF                                    | Obtenção de<br>termograma indicando<br>temperaturas de<br>tratamento térmico das<br>amostras | 02                     | 07    |
| Tratamento térmico do PUF nas temperaturas<br>indicadas             | Obtenção de pó cerâmico cristalino na fase desejada                                          | 02                     | 07    |
| Análise dos pós cerâmicos cristalinos por difratometria de raios X  | Obtenção de<br>difratograma para<br>análise da fase cristalina                               | 03                     | 07    |
|                                                                     |                                                                                              |                        |       |

| META FÍSICA: 2 - Preparação de membranas porosas |
|--------------------------------------------------|
|--------------------------------------------------|

| ATIVIDADES:                                                                    | INDICADOR FÍSICO DE EXECUÇÃO                                      | Dura<br>Prev | /ista |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------|-------|
| ~                                                                              |                                                                   | Inicio       |       |
| Preparação e tratamento térmico de pastilhas para obtenção de estrutura porosa | Obtenção de membranas porosas                                     | 03           | 11    |
| Análise estrutural das membranas obtidas por difração<br>de raios X            | Otenção de membranas<br>porosas com a fase<br>estrutural desejada | 04           | 11    |
| Análise da porosidade                                                          | Obtenção do grau de porosidade das membranas                      | 05           | 12    |
|                                                                                |                                                                   |              |       |
|                                                                                |                                                                   |              |       |

META FÍSICA: 3 - Impregnação e análise estrutural e elétrica das membranas porosas com composição eutética de carbonatos

| ATIVIDADES: | INDICADOR FÍSICO DE EXECUÇÃO               | Duração<br>Prevista |     |
|-------------|--------------------------------------------|---------------------|-----|
|             | -                                          | Inicio              | Fim |
|             | Obtenção de eletrólito sólido compósito de | 05                  | 14  |



|                                                               | LAMOX e carbonatos                                       |    |    |
|---------------------------------------------------------------|----------------------------------------------------------|----|----|
| Análise do eletrólito por microscopia eletrônica de varredura | Obtenção de micrografias dos eletrólitos                 | 05 | 15 |
| Análise do eletrólito por microscopia por sonda               | Obtenção da topologia dos eletrólitos                    | 05 | 15 |
| Análise por espectroscopia de fluorescência                   | Obtenção da composição química da membrana               | 06 | 15 |
| Análise por espectroscopia de impedância                      | Obtenção da condutividade do eletrólito sólido compósito | 06 | 15 |

| META FÍSICA: 4 - Montagem e análise de dispositivo sensor de CO2                     |                                               |                     |     |
|--------------------------------------------------------------------------------------|-----------------------------------------------|---------------------|-----|
| ATIVIDADES:                                                                          | INDICADOR FÍSICO DE EXECUÇÃO                  | Duração<br>Prevista |     |
|                                                                                      |                                               | Inicio              | Fim |
| Análise da força eletromotriz gerada sob diferentes teores de CO <sub>2</sub>        | Obtenção da<br>reprodutibilidade              | 12                  | 20  |
| Montagem do dispositivo sensor de CO <sub>2</sub> com diferentes eletrodos metálicos |                                               | 12                  | 20  |
| Teste do tempo de resposta                                                           | Obtenção do tempo de<br>resposta              | 12                  | 20  |
|                                                                                      | Obtenção do grau de<br>seletividade do sensor | 12                  | 20  |
|                                                                                      |                                               |                     |     |

| META FÍSICA: 5 - Escrita de relatório e artigo científico |                                         |                     |     |
|-----------------------------------------------------------|-----------------------------------------|---------------------|-----|
| ATIVIDADES:                                               | INDICADOR FÍSICO DE EXECUÇÃO            | Duração<br>Prevista |     |
|                                                           |                                         | Inicio              | Fim |
| Revisão da analise dos dados optidos e literatura         | Análise dos resultados<br>experimentais | 20                  | 24  |
| Heccita a cilinmicean na falatorio a affino ciantifico    | Publicação em periódico<br>indexado     | 20                  | 24  |
|                                                           |                                         |                     |     |
|                                                           |                                         |                     |     |
|                                                           |                                         |                     |     |



| Resultados Esperados                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 - Obtenção de sensor de CO <sub>2</sub>                                                                                                          |
| 2 - Submissão de pedido de patente                                                                                                                 |
| 3 -                                                                                                                                                |
| 4 -                                                                                                                                                |
| 5 -                                                                                                                                                |
| 6 -                                                                                                                                                |
| 7 -                                                                                                                                                |
| 8 -                                                                                                                                                |
| 9 -                                                                                                                                                |
| 10 -                                                                                                                                               |
|                                                                                                                                                    |
| Grau de Inovação (se houver):                                                                                                                      |
| Pela primeira vez serão utilizados os eletrólitos sólidos de vanadato de bismuto dopado com titânio e molibdato de lantânio dopado com tungstênio. |
|                                                                                                                                                    |
|                                                                                                                                                    |
|                                                                                                                                                    |
|                                                                                                                                                    |
|                                                                                                                                                    |
|                                                                                                                                                    |
|                                                                                                                                                    |
|                                                                                                                                                    |
|                                                                                                                                                    |
|                                                                                                                                                    |
|                                                                                                                                                    |
|                                                                                                                                                    |
|                                                                                                                                                    |
|                                                                                                                                                    |
|                                                                                                                                                    |
|                                                                                                                                                    |
|                                                                                                                                                    |



### PROJETO PARA BOLSA PÓS-DOUTORADO – EDITAL 6

#### **Bibliografia:**

- 1- Low temperature operable CO2 gas sensor based on trivalent aluminum ion conducting solid, Nagai, T.; Tamura, S.; Imanaka, N., Electrochem. Solid State Lett. 14, 12 (2011) J81-J83. DOI: 10.1149/2.009112esl.
- 2- Solid potentiometric CO2 sensor using Li3PO4 film as the electrolyte, Wang, H.; Ren, J.; Zhang, H.; Sun, G.; Jiang, Z., IEEE Sensors J. 12, 6 (2012) 2001-2005. DOI: 10.1109/JSEN.2011.2182041.
- 3- A solid electrolyte potentiometric CO2 gas sensor composed of lithium phosphate as both the reference and the solid electrolyte materials, Lee, H.-K.; Choi, N.-J.; Moon, S.E.; Yang, W. S.; Kim, J. Korean Phys. Soc. 61, 6 (2012) 938-941. DOI: 10.3938/jkps.61.938.
- 4- Preparation, structure and CO2 sensor studies of BaCa0.33Nb0.67-xFexO3-□, Mulmi, S.; Thangadurai, V., J. Electrochem. Soc. 160, 8 (2013) B95-B101. DOI: 10.1149/2.043308jes.
- 5- Durability improvement of solid electrolyte CO2 sensor against humidity variations, Lee, H.-K.; Choi, N.-J.; Moon, S.E.; Heo, J.A.; Yang, W.S.; Kim, J., J. Nanosci. Nanotechnol. 15, 1 (2015) 404-407. DOI: 10.1166/jnn.2015.8360.
- 6- Au thin-film electrodes based potentiometric CO2 sensor using Li3PO4 as both the reference material and the solid electrolyte, Wang, H.; Chen, D.; Liu, Z.; Zhang, M., Micro Nano Lett. 11, 9 (2016) 545-549. DOI: 10.1049/mnl.2016.0240.
- 7- Low power consumption solid electrochemical-type micro CO2 gas sensor, Lee, J.; Choi, N-J.; Lee, H-K.; Kim, J.; Lim, S.Y.; Kwon, J.Y.; Lee, S.M.; Moon, S.E.; Jong, J.J.; Yoo, D.J., Sensors Actuators B-Chemical 248 (2017) 957-960.

  DOI: 10.1016/j.snb.2017.02.040. 15
- 8- Fast initializing solid state electrochemical carbon dioxide sensor fabricated by a tape casting technique using yttria stabilized zirconia and sodium beta alumina heterojunction, Han, H.J.; Kim, T.W.; Kim, S.; Oh, S.; Park, C.-O., Sensors Actuators B-Chemical 248 (2017) 856-861. DOI: 10.1016/j.snb.2016.12.139.
- 9- Solid state electrochemical gas sensor for the quantitative determination of carbon dioxide, Schwandt, C.; Kumar, R.V.; Hills, M.P., Sensors Actuators B-Chemical 265 (2018) 27-34. DOI: 10.1016/j.snb.2018.03.012.
- 10- Editors' Choice-Review-Solid-State Electrochemical Carbon Dioxide Sensors: Fundamentals, Materials and Applications, Mulmi, S.; Thangadurai, V., J. Electrochem. Soc. 167, 3 (2020) 037567. DOI: 10.1149/1945-7111/ab67a9.
- 11- Electric field-assisted sintering (gadolinia-doped ceria/alkali salts) composite membranes, Carvalho, S.G.M.; Muccillo, E.N.S.M.; Marques, F.M.B.; Muccillo, R., Materialia 11 (2020) 100679. DOI: 10.1016/j.mtla.2020.100679.
- 12- Enhancement of the ionic conductivity in electric field-assisted pressureless sintered BITIVOX solid electrolytes, Medina, M.S.; Muccillo, E.N.S.; Muccillo, R, Ceramics 2 (2019) 502–513. DOI:10.3390/ceramics2030038.

# ipen

# PLANO DE TRABALHO

| 13- Designing fast oxide-ion conductors based on La2Mo2O9, Lacorre, P.; Goutenoire, F.; Bohnke, O.; Retoux, R.; Laligant, Y., Nature 404 (2000) 856–858. DOI: 10.1038/35009069.                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14- Electrical Conductivity of Magnesium Oxide/Molten Carbonate Eutectic Coexisting System, Nikolaeva, E.V.; Bovet, A.L.; Zakiryanova, I.D., Z. Naturforsch. 74, 9 (2019) 739–742. DOI: 10.1515/zna-2019-0109. |
|                                                                                                                                                                                                                |
|                                                                                                                                                                                                                |
|                                                                                                                                                                                                                |
|                                                                                                                                                                                                                |
|                                                                                                                                                                                                                |
|                                                                                                                                                                                                                |
|                                                                                                                                                                                                                |
|                                                                                                                                                                                                                |
|                                                                                                                                                                                                                |
|                                                                                                                                                                                                                |
|                                                                                                                                                                                                                |
|                                                                                                                                                                                                                |
|                                                                                                                                                                                                                |