PROGRESS
IN
FISSION PRODUCT NUCLEAR DATA

Information about activities
in the field of measurements and compilation/evaluations
of fission product nuclear data (FPND)

collected
by
M. Lammer

Nuclear Data Section
International Atomic Energy Agency
Vienna, Austria

No. 9
August 1983
PROGRESS
IN
FISSION PRODUCT NUCLEAR DATA

Information about activities
in the field of measurements and compilation/evaluations
of fission product nuclear data (FPND)

collected
by
M. Lammer

Nuclear Data Section
International Atomic Energy Agency
Vienna, Austria

No. 9
August 1983
FOREWORD

This is the ninth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed.

The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. Therefore, the IAEA cannot be held responsible for the information contained nor for any consequences resulting from the use of this information. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted.

The types of activities being included in this report are measurements, compilations and evaluations of:

- Fission product yields (neutron induced and spontaneous fission);
- Neutron reaction cross sections of fission products;
- Data related to the radioactive decay of fission products;
- Delayed neutron data of fission products; and
- Lumped fission product data (decay heat, absorption etc.).

The eighth issue of this series has been published in July 1982 as INDC(NDS)-130. The present issue includes contributions which were received by NDS between 1 August 1982 and 25 June 1983.

The next issue of this report series is envisaged to be published in June 1984.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>i</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>Submitting contributions</td>
<td>vii</td>
</tr>
<tr>
<td>Subject Index</td>
<td>ix</td>
</tr>
</tbody>
</table>

I. Measurements | 1 |

<table>
<thead>
<tr>
<th>Country</th>
<th>Laboratory and Address</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>CSTN Alger</td>
<td>(25)</td>
</tr>
<tr>
<td>Argentina</td>
<td>Com. Nac'lı En. At., Buenos Aires</td>
<td>3</td>
</tr>
<tr>
<td>Australia</td>
<td>AEEC, Lucas Heights</td>
<td>4,5</td>
</tr>
<tr>
<td></td>
<td>James Cook Univ., Queensland</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>Univ. of Wollongong, NSW</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>Western Austral. Inst. Technol.</td>
<td>(4)</td>
</tr>
<tr>
<td>Belgium</td>
<td>CEN Mol</td>
<td>8-10</td>
</tr>
<tr>
<td></td>
<td>Rijksuniv. Centrum, Antwerp</td>
<td>(4), 15</td>
</tr>
<tr>
<td></td>
<td>Univ. of Gent</td>
<td>6-9</td>
</tr>
<tr>
<td>EEC Belgium</td>
<td>CBNM Geel</td>
<td>(4), 10-15</td>
</tr>
<tr>
<td>Brazil</td>
<td>Inst. Eng. Nucl., Rio de Janeiro</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Univ. of Sofia</td>
<td>17, 18</td>
</tr>
<tr>
<td>Canada</td>
<td>Chalk River Nucl. Labs</td>
<td>19, 20</td>
</tr>
<tr>
<td></td>
<td>Univ. of Alberta, Edmonton</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Univ. of Toronto</td>
<td>22</td>
</tr>
<tr>
<td>Chile</td>
<td>Comision de En. Nuclear, Santiago</td>
<td>23</td>
</tr>
<tr>
<td>C.S.S.R.</td>
<td>Charles University, Prague</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Inst. Nuclear Physics, Rez</td>
<td>24</td>
</tr>
</tbody>
</table>

*) Page numbers in brackets refer to collaborations, which are not listed under "Laboratory and address"
Table of contents (cont'd)

<table>
<thead>
<tr>
<th>Country</th>
<th>Institute/Institution</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>CEN Bruyères-le-Chatel</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>CEN Grenoble</td>
<td>25,26</td>
</tr>
<tr>
<td></td>
<td>Inst. Laue-Langevin, Grenoble</td>
<td>8,9,26,(42,43)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44,(48)</td>
</tr>
<tr>
<td></td>
<td>Inst. Phys. Nucl., Villeurbanne</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Univ. de Grenoble</td>
<td>(35)</td>
</tr>
<tr>
<td></td>
<td>Univ. de Nice</td>
<td>27-32</td>
</tr>
<tr>
<td>Germany, F.R.</td>
<td>FIZ, Karlsruhe</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>GSI, Darmstadt</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>IKK Geesthacht</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>KFA Juelich</td>
<td>34,35</td>
</tr>
<tr>
<td></td>
<td>KFK, Karlsruhe</td>
<td>26,36-39</td>
</tr>
<tr>
<td></td>
<td>Philips-Univ., Marburg/Lahn</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Techn. Hochschule Darmstadt</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Techn. Univ. Braunschweig</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Techn. Univ. Muenchen</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Univ. Giessen</td>
<td>42,43,(48)</td>
</tr>
<tr>
<td></td>
<td>Univ. Mainz</td>
<td>35,44-48,79</td>
</tr>
<tr>
<td>CEC Germany</td>
<td>Eur. Inst. Transurane, Karlsruhe</td>
<td>49-50</td>
</tr>
<tr>
<td>India</td>
<td>BARC, Trombay</td>
<td>51-57,(58)</td>
</tr>
<tr>
<td></td>
<td>Indian Inst. Technol., Kanpur</td>
<td>58,59</td>
</tr>
<tr>
<td></td>
<td>Punjabi Univ., Pantiala</td>
<td>60-62</td>
</tr>
<tr>
<td>Israel</td>
<td>Soreq Nucl. Res. Centre, Yavne</td>
<td>63,64</td>
</tr>
<tr>
<td></td>
<td>Weizmann Inst. Sci., Rehovot</td>
<td>65</td>
</tr>
<tr>
<td>Italy</td>
<td>ENEL-Cent. Ric. Term. e Nucl., Milano</td>
<td>66,67</td>
</tr>
<tr>
<td></td>
<td>Politecnico di Milano</td>
<td>66,67</td>
</tr>
<tr>
<td>Ivory Coast</td>
<td>Inst. Recherches En. Nouv., Abidjan</td>
<td>29-31</td>
</tr>
<tr>
<td>Japan</td>
<td>Hiroshima Univ.</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>JAERI</td>
<td>69,70,78</td>
</tr>
<tr>
<td></td>
<td>Kyoto Univ.</td>
<td>71-75</td>
</tr>
<tr>
<td></td>
<td>Kyushu Univ.</td>
<td>(69,70)</td>
</tr>
<tr>
<td></td>
<td>Nagoya Univ.</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Rikkyo Univ., Kanagawa</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Univ. of Tokyo</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Yamagata Univ.</td>
<td>78</td>
</tr>
<tr>
<td>Kuwait</td>
<td>Univ. of Kuwait</td>
<td>(22)</td>
</tr>
<tr>
<td>Norway</td>
<td>Univ. of Oslo</td>
<td>79</td>
</tr>
<tr>
<td>Sweden</td>
<td>Chalmers U. of Technol., Goeteborg</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Studsvik Sci. Res. Lab.</td>
<td>80-84</td>
</tr>
<tr>
<td></td>
<td>Univ. of Lund</td>
<td>85</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Eidgen. Inst. f. Reaktorforschung</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Univ. Bern</td>
<td>86</td>
</tr>
</tbody>
</table>

*) see page iii
Table of contents (cont'd)

CERN Switzerland: ISOLDE collab., CERN, Geneva 87,88

United Kingdom: AERE Harwell 89-91
Dounreay N.P.D.E., Scotland 92
Nat'l Physical Lab., Teddington 93,94
Univ. of Birmingham 95
Univ. of Glasgow, Kelvin Lab. (48)

U. S. A.: Ames Lab., Iowa State Univ. (101,102)
ANL, Argonne 96-100
BNL, Brookhaven 101,102
Clark Univ. (101,102)
Cornell Univ. (101,102)
HEDL, Hanford, Richland (47)
INEL, EG&G Idaho (101,102),103-106
INEL, Exxon Nuclear Idaho Co. 107
Lafayette College (101,102)
Los Alamos National Lab. (47),65,79,(101,102)
LLL, Livermore (101,102),108,109
Louisiana State Univ. (101,102)
McClellan Central Lab. 108
McGill Univ. (101,102)
ORNL, Oak Ridge (4),110-112
Pacific Northwest Lab., Richland (101,102),113,114
Texas A&M (101,102)
Univ. of Illinois 115
Univ. of Lowell, Mass. 116
Univ. of Maryland (101,102)
Univ. of Oklahoma (101,102)
Washington Univ., St. Louis .. 117

Lensovjet Inst. Technol., Leningrad. .. 119,120

II. Compilations and Evaluations 125

Belgium: Univ. of Gent 127

France: CEN Cadarache (128,132,134)
CEN Grenoble 128
CEN Saclay (128),129

German D. R.: ZfK Rossendorf, Dresden 130

Germany, F.R.: KFK, Karlsruhe (132)
Philips-Univ. Marburg/Lahn 131

*) see page iii
Table of contents (cont'd)

CEC Germany : Eur. Inst. Transurane, Karlsruhe . . 132
India : Panjab Univ., Chandigarh 133
Italy : CNEN, Bologna 134
Japan : Japanese Nuclear Data Committee . 135-137
Netherlands : ECN Petten (134),138-140
Sweden : Studsvik Sci. Res. Lab. (152)
United Kingdom : AERE Harwell 141-143
CEGB Berkeley (working group) 144,145
Univ. of Birmingham 146
U. S. A. : HEDL, Hanford, Richland 147,148,(150-152)
INEL, EG&G Idaho (147,148),149
Los Alamos National Lab. (147,148),150-152
ORNL, Oak Ridge 153,154
Washington Univ., St. Louis 155
U. S. S. R. : FEI, Obninsk 156
Moscow Phys. Engg. Inst. 157

III. Recent publications related to FPND 158

IV. Meetings 162

International conference on nuclear data for
science and technology 162

Announcement: Specialist's meeting on yields
and decay data of fission product nuclides . . 169

*) see page iii
SUBMITTING CONTRIBUTIONS

The next issue is expected to be published in July 1984. All scientists who are presently working - or have recently completed work - in the field of FPMD and who want to contribute to the 9th issue of this series, are kindly asked to send contributions to me between now and 1 May 1984, so that they reach NDS before 15 May 1984.

Those scientists or groups who have already contributed to the present issue and who want to leave their contribution(s) unchanged or who wish to suggest only slight changes, should write an appropriate note to me before the above deadline.

Format:

The size of one contribution should preferably not exceed one page. Of course, the number of contributions per working group or laboratory is not restricted. Similar experiments (or calculations, evaluations, etc.) performed by one person or group should preferably be combined to one contribution, if this is possible without loss of clarity.

The headings suggested for the 3 types of contributions can be found on page viii. For the sake of consistency it is requested that the suggested headings be used as far as appropriate.

Compilation and evaluations: If applicable, the availability of numerical data from computer files could be indicated either under the headings "Computer files ..." or under a separate heading "Availability ...".

Editing: Since contributions received are generally used directly for publication, it is important that typed originals are sent and not just carbon- or photocopies. It would be a great help for producing an edited report if a margin of 2 cm (or 1 inch for North American paper format) is left on each side of the text and a 5 cm space is left at the top of each page (or 3 cm, if the name of the country is included).

Comments or suggestions concerning the format, content and layout of this report series are most welcome and should be directed to me in time before the next issue.

I would like to thank the contributors for their cooperation.

M. Lammer
<table>
<thead>
<tr>
<th>Measurements:</th>
<th>Compilations:</th>
<th>Evaluations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory and address:</td>
<td>Laboratory and address:</td>
<td>Laboratory and address:</td>
</tr>
<tr>
<td>Names:</td>
<td>Names:</td>
<td>Names:</td>
</tr>
<tr>
<td>Facilities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment:</td>
<td>Compilation:</td>
<td>Evaluation:</td>
</tr>
<tr>
<td>Method:</td>
<td>Purpose:</td>
<td>Purpose:</td>
</tr>
<tr>
<td>Accuracy:</td>
<td>Major sources of information:</td>
<td>Method:</td>
</tr>
<tr>
<td>Completion date:</td>
<td>Deadline of literature coverage:</td>
<td>Major sources of information:</td>
</tr>
<tr>
<td>Discrepancies to other reported data:</td>
<td>Cooperation:</td>
<td>Deadline of literature coverage:</td>
</tr>
<tr>
<td>Publications:</td>
<td>Other relevant details:</td>
<td>Status:</td>
</tr>
<tr>
<td>Computer file:</td>
<td>Cooperation:</td>
<td></td>
</tr>
<tr>
<td>Completion date:</td>
<td>Other relevant details:</td>
<td></td>
</tr>
<tr>
<td>Publications:</td>
<td>Computer file of compiled data:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer file of evaluated data:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discrepancies encountered:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Completion date:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Publications:</td>
<td></td>
</tr>
</tbody>
</table>
1. MEASUREMENTS

1.1. Fission yields

<table>
<thead>
<tr>
<th>nuclide</th>
<th>neutron energy</th>
<th>further specifications</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th-229</td>
<td>thermal</td>
<td>element yields Br,Kr,Rb,Te,I,Xe,Cs</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>mass yields, R-value rel. U-235 (Sr-91)</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>37 FP=25 chains, T1/2=7m - 65d, Ge(Li)</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>fragment mass yields, physical, all A</td>
<td>(115)</td>
</tr>
<tr>
<td>Th-230</td>
<td>unspecified</td>
<td>mass yields</td>
<td>5</td>
</tr>
<tr>
<td>Th-232</td>
<td>reactor-spec.</td>
<td>indep., cumul. and chain yields</td>
<td>(86)</td>
</tr>
<tr>
<td></td>
<td>0.1-0.8 MeV</td>
<td>rad.chem., Ge(Li), normalized to 200g</td>
<td>(96)</td>
</tr>
<tr>
<td></td>
<td>2.0-5.2 MeV</td>
<td>fragment mass distribution, kin. energy</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>3 MeV</td>
<td>element yields Br,Kr,Rb,Te,I,Xe,Cs</td>
<td>(25)</td>
</tr>
<tr>
<td>U-232</td>
<td>thermal</td>
<td>element yields Br,Kr,Rb,Te,I,Xe,Cs</td>
<td>25</td>
</tr>
<tr>
<td>U-233</td>
<td>thermal</td>
<td>Te isotope yields, mass-spec.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>light charged particles, absol. yields</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>cumul. + indep., rad. chem. + Ge(Li)</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>indep. cumul. yields, rad. chem. + Ge(Li)</td>
<td>(86)</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>fragment mass yields, physical, all A</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>cumul. yields (T1/2 = 7.1-54 s)</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>FFTF, i.d. mass-spectrometry</td>
<td>107</td>
</tr>
<tr>
<td>U-235</td>
<td>photofission</td>
<td>fragment charge + isotopic distribution</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>Te isotope yields, mass-spec.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>light charged particles, absol. yields</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>element yields Br,Kr,Rb,Te,I,Xe,Cs</td>
<td>(25)</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>direct ylds, A=130-147, on-line mass-spec.</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>A=133 charge disp., rad.chem.+ mass-spec.</td>
<td>(45)</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>fragment mass, charge distribution</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>polar LCP absolute yields, angular distr.</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>indep. yield Br-87 to 91, I-138 to 141</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>cumul. + indep., rad.chem. + Ge(Li)</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>rel. yields + 1 absolute yield</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>indep.+ cumul. yields, rad.chem + Ge(Li)</td>
<td>(86)</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>tritium yield</td>
<td>(91)</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>isomer yield ratios, on-line mass-spec</td>
<td>(113)</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>fragment mass yields, physical, all A</td>
<td>(115)</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>Ag,Cd,In,Sn fract. yields, SISAK-2 system</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>Tc-104,105 fract. indep. yields</td>
<td>(117)</td>
</tr>
</tbody>
</table>

a) with respect to the earlier issues, underlined page numbers refer to new work, page numbers in brackets refer to unchanged contributions, and others refer to revised contributions.
1.1. Fission yields (cont'd)

<table>
<thead>
<tr>
<th>nuclide</th>
<th>neutron energy</th>
<th>further specifications</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-235</td>
<td>fast</td>
<td>element yields Br,Kr,Rb,Te,I,Xe,Cs</td>
<td>(25)</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>2 fast spectra, direct Ge(Li) + rad.chem.</td>
<td>(89)</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>tritium yield</td>
<td>(91)</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>PFR, chain yields, mass-spec.</td>
<td>92</td>
</tr>
<tr>
<td>U-236</td>
<td>spontaneous</td>
<td>angular momentum (indep. isomer ratio)</td>
<td>55</td>
</tr>
<tr>
<td>U-238</td>
<td>photofission</td>
<td>fragment charge + isotopic distribution</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>epicadmium</td>
<td>cumul. = fract. yields, A=131-134</td>
<td>(17)</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>2 fast spectra, direct Ge(Li) + rad.chem.</td>
<td>(89)</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>PFR, chain yields, mass-spec.</td>
<td>92</td>
</tr>
<tr>
<td>Np-237</td>
<td>photofission</td>
<td>35 cumulative + 4 independent yields</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>light charged particles, absol. yields</td>
<td>(9)</td>
</tr>
<tr>
<td>Pu-238</td>
<td>unspecified</td>
<td>element yields Br,Kr,Rb,Te,I,Xe,Cs</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>spontaneous</td>
<td>mass yields, kin. energy</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>spontaneous</td>
<td>fragment kinetic en. and mass distrib.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>mass yields, kin. energy</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>cumul. yields Ru-103,1-131 rel. Ba-140</td>
<td>66</td>
</tr>
<tr>
<td>Pu-239</td>
<td>spontaneous</td>
<td>mass yields, kin. energy</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>mass resolution correction</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>mass yields, kin. energy</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>fragment mass distribution</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>light charged particles, absol. yields</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>fragment kinetic en. and mass distrib.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>indep. yields, light fragments</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>cumul. + indep., rad. chem. + Ge(Li)</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>indep. + cumul. yields, rad.chem. + Ge(Li)</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>tritium yield</td>
<td>(91)</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>fragment mass yields, physical, all A</td>
<td>(115)</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>Tc-104,105 fract. indep. yields</td>
<td>(117)</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>cumul. yields (T1/2 = 7.1-48 s)</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>2 fast spectra, direct Ge(Li)+rad.chem.</td>
<td>(89)</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>tritium yield</td>
<td>(91)</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>PFR, chain yields, mass-spec.</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>FFTF, i.d. mass-spectrometry</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>0.1-8 MeV</td>
<td>rad. chem., Ge(Li), normalised to 200%</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>14-15 MeV</td>
<td>direct Ge(Li), yields rel. Zr-95 etc.</td>
<td>109</td>
</tr>
</tbody>
</table>
1.1. Fission yields (cont'd)

<table>
<thead>
<tr>
<th>nuclide</th>
<th>neutron energy</th>
<th>further specifications</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu-240</td>
<td>photofission</td>
<td>fragment mass distribution</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>spontaneous</td>
<td>mass yields, kin. energy</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>spontaneous</td>
<td>fragment mass distribution</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>spontaneous</td>
<td>fragment kinetic en. and mass distrib.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>cumul. yields 5 FP rel Ba-140</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>tritium yield</td>
<td>(91)</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>PFR, chain yields, mass-spec.</td>
<td>92</td>
</tr>
<tr>
<td>Pu-241</td>
<td>spontaneous</td>
<td>mass yields, kin. energy</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>mass yields, kin. energy</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>fragment mass distribution</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>fragment kin. energy and mass distrib.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>tritium yield</td>
<td>(91)</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>tritium yield</td>
<td>(91)</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>PFR, chain yields, mass-spec.</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>FFTF, i.d. mass-spectrometry</td>
<td>107</td>
</tr>
<tr>
<td>Pu-242</td>
<td>photofission</td>
<td>fragment mass distribution</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>spontaneous</td>
<td>mass yields, kin. energy</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>spontaneous</td>
<td>fragment mass distribution</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>spontaneous</td>
<td>fragment kin. energy and mass distrib.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>14.8 MeV</td>
<td>65 FP=45 chains, rad.chem.+ direct Ge(Li)</td>
<td>41</td>
</tr>
<tr>
<td>Pu-243</td>
<td>spontaneous</td>
<td>mass yields, kin. energy</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>mass yields, kin. energy</td>
<td>5</td>
</tr>
<tr>
<td>Pu-244</td>
<td>photofission</td>
<td>fragment mass distribution</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>spontaneous</td>
<td>mass yields, kin. energy</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>spontaneous</td>
<td>fragment mass distribution</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>spontaneous</td>
<td>fragment kin. energy and mass distrib.</td>
<td>10</td>
</tr>
<tr>
<td>Am-241</td>
<td>thermal</td>
<td>light charged particles, absol. yields</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td>fission spec.</td>
<td>rad.chem., normaliz. and rel U-235,238</td>
<td>108</td>
</tr>
<tr>
<td>Cm-243</td>
<td>thermal</td>
<td>23 FP = 16 chains, (T_{1/2} = 6h-65d), Ge(Li)</td>
<td>111</td>
</tr>
<tr>
<td>Cm-244</td>
<td>spontaneous</td>
<td>absolute yields of Mo-99, Ba-140</td>
<td>54</td>
</tr>
<tr>
<td>Cf-249</td>
<td>thermal</td>
<td>7 indep. + 32 cumul. yields</td>
<td>123</td>
</tr>
<tr>
<td>Cf-252</td>
<td>spontaneous</td>
<td>mass resolution correction</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>spontaneous</td>
<td>light particle yields rel. (\alpha) yield</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>spontaneous</td>
<td>angular momentum (indep. isomer ratio)</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>spontaneous</td>
<td>cumul. yield, short lived Ru isotopes</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>spontaneous</td>
<td>isotopic yields of Tc isotopes</td>
<td>57</td>
</tr>
</tbody>
</table>
1.2. Neutron reaction cross sections

<table>
<thead>
<tr>
<th>nuclide</th>
<th>neutron energy</th>
<th>reaction</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br-79</td>
<td>below 10 keV</td>
<td>res. pars.</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>25 keV</td>
<td>(n,γ) maxwellian average</td>
<td>39</td>
</tr>
<tr>
<td>Br-81</td>
<td>below 15 keV</td>
<td>res. pars.</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>25 keV</td>
<td>(n,γ) maxwellian average</td>
<td>39</td>
</tr>
<tr>
<td>Kr-80</td>
<td>4-300 keV</td>
<td>(n,γ), total</td>
<td>36</td>
</tr>
<tr>
<td>Kr-82</td>
<td>1 eV-1.5 keV</td>
<td>res. pars. (transmission)</td>
<td>(33)</td>
</tr>
<tr>
<td>Kr-83</td>
<td>1 eV-1.5 keV</td>
<td>res. pars. (transmission)</td>
<td>(33)</td>
</tr>
<tr>
<td>Kr-84</td>
<td>1 eV-1.5 keV</td>
<td>res. pars. (transmission)</td>
<td>(33)</td>
</tr>
<tr>
<td>Kr-86</td>
<td>1 eV-1.5 keV</td>
<td>res. pars. (transmission)</td>
<td>(33)</td>
</tr>
<tr>
<td></td>
<td>4-300 keV</td>
<td>(n,γ), total</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>up to 400 keV</td>
<td>neutron cross section study</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>2.6-2000 keV</td>
<td>(n,γ)</td>
<td>110</td>
</tr>
<tr>
<td>Rb-85</td>
<td>below 17 keV</td>
<td>res. pars.</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>25 keV</td>
<td>(n,γ) maxwellian average</td>
<td>39</td>
</tr>
<tr>
<td>Rb-87</td>
<td>below 100 keV</td>
<td>res. pars.</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>25 keV</td>
<td>(n,γ) maxwellian average</td>
<td>39</td>
</tr>
<tr>
<td>Sr-86</td>
<td>3-200 keV</td>
<td>(n,γ), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td>Sr-87</td>
<td>3-200 keV</td>
<td>(n,γ), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td>Sr-88</td>
<td>fast</td>
<td>capture γ-spectrum</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3-200 keV</td>
<td>(n,γ), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>up to 300 keV</td>
<td>res. pars.</td>
<td>4</td>
</tr>
<tr>
<td>Y-89</td>
<td>3-200 keV</td>
<td>(n,γ), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>47 keV-20 MeV</td>
<td>total</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>0.8-4.5 MeV</td>
<td>total</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>0.5-4.5 MeV</td>
<td>(n,γ)</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1.5-4.0 MeV</td>
<td>elastic</td>
<td>97</td>
</tr>
<tr>
<td>Zr</td>
<td>47 keV-20 MeV</td>
<td>total</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>0.5-4.0 MeV</td>
<td>(n,γ)</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1.5-4.0 MeV</td>
<td>elastic</td>
<td>97</td>
</tr>
<tr>
<td>Zr-90</td>
<td>3-200 keV</td>
<td>(n,γ), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td>Zr-91</td>
<td>3-200 keV</td>
<td>(n,γ), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td>Zr-92</td>
<td>3-200 keV</td>
<td>(n,γ), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td>Zr-94</td>
<td>thermal+30 keV</td>
<td>(n,γ), res. pars.</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>3-200 keV</td>
<td>(n,γ), res. pars.</td>
<td>4</td>
</tr>
</tbody>
</table>
1.2 Neutron reaction cross sections (cont'd)

<table>
<thead>
<tr>
<th>nuclide</th>
<th>neutron energy</th>
<th>reaction</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr-96</td>
<td>thermal+30 keV up to 35 keV</td>
<td>((n,\gamma)) res. pars.</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>47 keV-20 MeV</td>
<td>total</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>0.8-4.5 MeV</td>
<td>total</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>1.5-4.0 MeV</td>
<td>elastic</td>
<td>97</td>
</tr>
<tr>
<td>Nb-93</td>
<td>30+500 keV</td>
<td>((n,\gamma))</td>
<td>(102)</td>
</tr>
<tr>
<td></td>
<td>47 keV-20 MeV</td>
<td>total</td>
<td>98</td>
</tr>
<tr>
<td>Mo</td>
<td>47 keV-20 MeV</td>
<td>total</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>0.5-4.0 MeV</td>
<td>((n,\gamma))</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1.5-4.0 MeV</td>
<td>elastic</td>
<td>97</td>
</tr>
<tr>
<td>Mo-92</td>
<td>3-200 keV</td>
<td>((n,\gamma)), res.pars.</td>
<td>4</td>
</tr>
<tr>
<td>Mo-94</td>
<td>3-200 keV</td>
<td>((n,\gamma)), res.pars.</td>
<td>4</td>
</tr>
<tr>
<td>Mo-95</td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption ((n,\gamma)), res. pars.</td>
<td>49</td>
</tr>
<tr>
<td>Mo-96</td>
<td>3-200 keV</td>
<td>((n,\gamma)), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td>Mo-97</td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption ((n,\gamma)), res. pars.</td>
<td>49</td>
</tr>
<tr>
<td>Mo-98</td>
<td>thermal+30 keV</td>
<td>((n,\gamma))</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption ((n,\gamma)), res. pars.</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>3-200 keV</td>
<td>((n,\gamma)), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td>Mo-100</td>
<td>thermal+30 keV</td>
<td>((n,\gamma))</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>3-200 keV</td>
<td>((n,\gamma)), res.pars.</td>
<td>4</td>
</tr>
<tr>
<td>Tc-99</td>
<td>4.5-24 eV</td>
<td>res. pars. (transmission) ((n,\gamma))</td>
<td>(33)</td>
</tr>
<tr>
<td></td>
<td>2.6-2000 keV</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>Ru-100</td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption</td>
<td>49</td>
</tr>
<tr>
<td>Ru-101</td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption</td>
<td>49</td>
</tr>
<tr>
<td>Ru-102</td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption</td>
<td>49</td>
</tr>
<tr>
<td>Ru-104</td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption</td>
<td>49</td>
</tr>
<tr>
<td>Rh-103</td>
<td>47 keV-20 MeV</td>
<td>total</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>0.8-4.5 MeV</td>
<td>total</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>1.5-4.0 MeV</td>
<td>elastic</td>
<td>97</td>
</tr>
<tr>
<td>Pd</td>
<td>47 keV-20 MeV</td>
<td>total</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>0.8-4.5 MeV</td>
<td>total</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>1.5-4.0 MeV</td>
<td>elastic</td>
<td>97</td>
</tr>
<tr>
<td>Pd-104</td>
<td>up to 500 keV</td>
<td>((n,\gamma))</td>
<td>(15)</td>
</tr>
</tbody>
</table>
1.2 Neutron reaction cross sections (cont'd)

<table>
<thead>
<tr>
<th>nuclide</th>
<th>neutron energy</th>
<th>reaction</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd-105</td>
<td>up to 500 keV</td>
<td>((n,\gamma))</td>
<td>15</td>
</tr>
<tr>
<td>Pd-106</td>
<td>fast up to 500 keV</td>
<td>RAPSODIE, mass-spec., absorption ((n,\gamma))</td>
<td>49</td>
</tr>
<tr>
<td>Pd-108</td>
<td>fast up to 500 keV</td>
<td>RAPSODIE, mass-spec., absorption ((n,\gamma))</td>
<td>15</td>
</tr>
<tr>
<td>Pd-110</td>
<td>fast up to 500 keV</td>
<td>RAPSODIE, mass-spec., absorption ((n,\gamma))</td>
<td>49</td>
</tr>
<tr>
<td>Ag</td>
<td>47 keV-20 MeV</td>
<td>total</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>0.5-4.0 MeV</td>
<td>((n,\gamma))</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1.5-4.0 MeV</td>
<td>elastic</td>
<td>97</td>
</tr>
<tr>
<td>Ag-107</td>
<td>1.5 eV-7 keV</td>
<td>res. pars.</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>3.3-700 keV</td>
<td>((n,\gamma))</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>2.6-2000 keV</td>
<td>((n,\gamma))</td>
<td>110</td>
</tr>
<tr>
<td>Ag-109</td>
<td>1.5 eV-7 keV</td>
<td>res. pars.</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>3.3-700 keV</td>
<td>((n,\gamma))</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>2.6-2000 keV</td>
<td>((n,\gamma))</td>
<td>110</td>
</tr>
<tr>
<td>Cd</td>
<td>47 keV-20 MeV</td>
<td>total</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>0.5-4.0 MeV</td>
<td>((n,\gamma))</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1.5-4.0 MeV</td>
<td>elastic</td>
<td>97</td>
</tr>
<tr>
<td>Cd-106</td>
<td>3-200 keV</td>
<td>((n,\gamma), \text{res.pars.}))</td>
<td>4</td>
</tr>
<tr>
<td>Cd-108</td>
<td>3-200 keV</td>
<td>((n,\gamma), \text{res.pars.}))</td>
<td>4</td>
</tr>
<tr>
<td>Cd-110</td>
<td>fast 3-200 keV</td>
<td>((n,\gamma)) to Cd-111m</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>3-200 keV</td>
<td>((n,\gamma), \text{res. pars.}))</td>
<td>4</td>
</tr>
<tr>
<td>Cd-111</td>
<td>3-200 keV</td>
<td>((n,\gamma), \text{res. pars.}))</td>
<td>4</td>
</tr>
<tr>
<td>Cd-112</td>
<td>3-200 keV</td>
<td>((n,\gamma), \text{res. pars.}))</td>
<td>4</td>
</tr>
<tr>
<td>Cd-113</td>
<td>3-200 keV</td>
<td>((n,\gamma), \text{res. pars.}))</td>
<td>4</td>
</tr>
<tr>
<td>Cd-114</td>
<td>3-200 keV</td>
<td>((n,\gamma), \text{res. pars.}))</td>
<td>4</td>
</tr>
<tr>
<td>Cd-116</td>
<td>3-200 keV</td>
<td>((n,\gamma), \text{res. pars.}))</td>
<td>4</td>
</tr>
<tr>
<td>In</td>
<td>47 keV-20 MeV</td>
<td>total</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>0.8-4.5 MeV</td>
<td>total</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>0.5-4.0 MeV</td>
<td>((n,\gamma))</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1.5-4.0 MeV</td>
<td>elastic</td>
<td>97</td>
</tr>
<tr>
<td>In-113</td>
<td>fission spec.</td>
<td>Cf-252 source, ((n,n'))In-113m</td>
<td>75</td>
</tr>
</tbody>
</table>
1.2 Neutron reaction cross sections (cont'd)

<table>
<thead>
<tr>
<th>nuclide</th>
<th>neutron energy</th>
<th>reaction</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-115</td>
<td>fission spec.</td>
<td>Cf-252 source, ((n,n'))In-115m (\left(n,\gamma\right))</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>2-10 MeV</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>Sn</td>
<td>47 keV-20 MeV</td>
<td>total</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>0.8-4.5 MeV</td>
<td>total</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>1.5-4.0 MeV</td>
<td>elastic</td>
<td>97</td>
</tr>
<tr>
<td>Sb</td>
<td>47 keV-20 MeV</td>
<td>total</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>0.8-4.5 MeV</td>
<td>total</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>0.5-4.0 MeV</td>
<td>(\left(n,\gamma\right))</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1.5-4.0 MeV</td>
<td>elastic</td>
<td>97</td>
</tr>
<tr>
<td>Sb-123</td>
<td>unspecified</td>
<td>transmission and capture</td>
<td>70</td>
</tr>
<tr>
<td>Te-125</td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption</td>
<td>49</td>
</tr>
<tr>
<td>Te-126</td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption</td>
<td>49</td>
</tr>
<tr>
<td>Te-128</td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption</td>
<td>49</td>
</tr>
<tr>
<td>I-127</td>
<td>2.6-2000 keV</td>
<td>(\left(n,\gamma\right))</td>
<td>110</td>
</tr>
<tr>
<td>I-129</td>
<td>1 eV-1.5 keV</td>
<td>res. pars. (transmission) (\left(n,\gamma\right))</td>
<td>(33)</td>
</tr>
<tr>
<td></td>
<td>2.6-2000 keV</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>Xe-124</td>
<td>30 keV</td>
<td>(\left(n,\gamma\right))</td>
<td>36</td>
</tr>
<tr>
<td>Xe-132</td>
<td>30 keV</td>
<td>(\left(n,\gamma\right))</td>
<td>36</td>
</tr>
<tr>
<td>Xe-134</td>
<td>30 keV</td>
<td>(\left(n,\gamma\right))</td>
<td>36</td>
</tr>
<tr>
<td>Xe-136</td>
<td>2.6-2000 keV</td>
<td>(\left(n,\gamma\right))</td>
<td>110</td>
</tr>
<tr>
<td>Cs-133</td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption (\left(n,\gamma\right))</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>2.6-2000 keV</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>Ba-134</td>
<td>3-200 keV</td>
<td>(\left(n,\gamma\right)), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td>Ba-135</td>
<td>3-200 keV</td>
<td>(\left(n,\gamma\right)), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td>Ba-136</td>
<td>3-200 keV</td>
<td>(\left(n,\gamma\right)), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td>Ba-137</td>
<td>1.5 eV-100 keV</td>
<td>(\left(n,\gamma\right)), res. pars.</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>3-200 keV</td>
<td>(\left(n,\gamma\right)), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td>Ba-138</td>
<td>3-200 keV</td>
<td>(\left(n,\gamma\right)), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td>La-139</td>
<td>fast</td>
<td>capture (\gamma) spectrum</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>below 2.5 keV</td>
<td>res. pars.</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>0.5-4.0 keV</td>
<td>(\left(n,\gamma\right))</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>3-200 keV</td>
<td>(\left(n,\gamma\right)), res. pars.</td>
<td>4</td>
</tr>
</tbody>
</table>
1.2 Neutron reaction cross sections (cont'd)

<table>
<thead>
<tr>
<th>nuclide</th>
<th>neutron energy</th>
<th>reaction</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce-140</td>
<td>3-200 keV</td>
<td>(n,γ), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td>Pr-141</td>
<td>fast</td>
<td>capture γ-spectrum</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>3-200 keV</td>
<td>(n,γ), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6-250 keV</td>
<td>(n,γ)</td>
<td>39</td>
</tr>
<tr>
<td>Nd-142</td>
<td>3-200 keV</td>
<td>(n,γ), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6-250 keV</td>
<td>(n,γ)</td>
<td>39</td>
</tr>
<tr>
<td>Nd-143</td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>CFRMF, EBR-II, integral (n,γ)</td>
<td>(106)</td>
</tr>
<tr>
<td></td>
<td>3-200 keV</td>
<td>(n,γ), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6-250 keV</td>
<td>(n,γ)</td>
<td>39</td>
</tr>
<tr>
<td>Nd-144</td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>CFRMF, EBR-II, integral (n,γ)</td>
<td>(106)</td>
</tr>
<tr>
<td></td>
<td>3-200 keV</td>
<td>(n,γ), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6-250 keV</td>
<td>(n,γ)</td>
<td>39</td>
</tr>
<tr>
<td>Nd-145</td>
<td>fast</td>
<td>CFRMF, EBR-II, integral (n,γ)</td>
<td>(106)</td>
</tr>
<tr>
<td></td>
<td>3-200 keV</td>
<td>(n,γ), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td>Nd-146</td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>CFRMF, EBR-II, integral (n,γ)</td>
<td>(106)</td>
</tr>
<tr>
<td></td>
<td>3-200 keV</td>
<td>(n,γ), res. pars.</td>
<td>4</td>
</tr>
<tr>
<td>Nd-147</td>
<td>thermal</td>
<td>effective capture cross section</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>4-250 keV</td>
<td>(n,γ)</td>
<td>38</td>
</tr>
<tr>
<td>Nd-148</td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>CFRMF, EBR-II, integral (n,γ)</td>
<td>(106)</td>
</tr>
<tr>
<td></td>
<td>3-200 keV</td>
<td>(n,γ)</td>
<td>4</td>
</tr>
<tr>
<td>Nd-150</td>
<td>fast</td>
<td>CFRMF, EBR-II, integral (n,γ)</td>
<td>(106)</td>
</tr>
<tr>
<td>Pm-147</td>
<td>4-250 keV</td>
<td>(n,γ), deduced from Sm-148,149,150</td>
<td>38</td>
</tr>
<tr>
<td>Pm-148</td>
<td>4-250 keV</td>
<td>(n,γ), deduced from Sm-148,149,150</td>
<td>38</td>
</tr>
<tr>
<td>Sm-147</td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>CFRMF, EBR-II, integral (n,γ)</td>
<td>(106)</td>
</tr>
<tr>
<td>Sm-148</td>
<td>4-250 keV</td>
<td>(n,γ)</td>
<td>38</td>
</tr>
<tr>
<td>Sm-149</td>
<td>fast</td>
<td>RAPSODIE, mass-spec., absorption</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>CFRMF, EBR-II, integral (n,γ)</td>
<td>(106)</td>
</tr>
<tr>
<td></td>
<td>up to 500 keV</td>
<td>(n,γ)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4-250 keV</td>
<td>(n,γ)</td>
<td>38</td>
</tr>
<tr>
<td>Sm-150</td>
<td>4-250 keV</td>
<td>(n,γ)</td>
<td>38</td>
</tr>
</tbody>
</table>
1.2 Neutron reaction cross sections (cont'd)

<table>
<thead>
<tr>
<th>nuclide</th>
<th>neutron energy</th>
<th>reaction</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sm-151</td>
<td>4-250 keV</td>
<td>((n,\gamma)) deduced from Sm-148,149,150</td>
<td>38</td>
</tr>
<tr>
<td>Sm-152</td>
<td>30 keV</td>
<td>((n,\gamma))</td>
<td>36</td>
</tr>
<tr>
<td>Sm-154</td>
<td>30 keV</td>
<td>((n,\gamma))</td>
<td>36</td>
</tr>
<tr>
<td>Eu</td>
<td>0.5-4.0 keV</td>
<td>((n,\gamma))</td>
<td>100</td>
</tr>
<tr>
<td>Eu-151</td>
<td>fast 2.6-2000 keV</td>
<td>CFRMF, EBR-II, integral ((n,\gamma))</td>
<td>(106)</td>
</tr>
<tr>
<td></td>
<td>48.5 keV</td>
<td>((n,\gamma)) to 9.3 h isomer</td>
<td>36</td>
</tr>
<tr>
<td>Eu-152</td>
<td>fast</td>
<td>CFRMF, EBR-II, integral ((n,\gamma))</td>
<td>(106)</td>
</tr>
<tr>
<td>Eu-153</td>
<td>fast 2.6-2000 keV</td>
<td>CFRMF, EBR-II, integral ((n,\gamma))</td>
<td>(106)</td>
</tr>
<tr>
<td>Eu-154</td>
<td>fast</td>
<td>CFRMF, EBR-II, integral ((n,\gamma))</td>
<td>(106)</td>
</tr>
<tr>
<td>Gd</td>
<td>0.5-4.0 keV</td>
<td>((n,\gamma))</td>
<td>100</td>
</tr>
<tr>
<td>Gd-152</td>
<td>30 keV</td>
<td>((n,\gamma))</td>
<td>36</td>
</tr>
<tr>
<td>Gd-155</td>
<td>10 eV-200 keV</td>
<td>((n,\gamma))</td>
<td>69</td>
</tr>
<tr>
<td>Gd-157</td>
<td>10 eV-200 keV</td>
<td>((n,\gamma))</td>
<td>69</td>
</tr>
<tr>
<td>Gd-158</td>
<td>30 keV</td>
<td>((n,\gamma))</td>
<td>36</td>
</tr>
<tr>
<td>Tb-159</td>
<td>0.5-4.0 keV</td>
<td>((n,\gamma))</td>
<td>100</td>
</tr>
<tr>
<td>Dy</td>
<td>0.5-4.0 keV</td>
<td>((n,\gamma))</td>
<td>100</td>
</tr>
<tr>
<td>Dy-162</td>
<td>14 MeV</td>
<td>((n,p))</td>
<td>18</td>
</tr>
<tr>
<td>Er</td>
<td>0.5-4.0 keV</td>
<td>((n,\gamma))</td>
<td>100</td>
</tr>
<tr>
<td>FP *)</td>
<td>unspecified 1 eV-1.5 keV</td>
<td>comparative measurements (transmission)</td>
<td>33</td>
</tr>
<tr>
<td>Many +)</td>
<td>thermal</td>
<td>((n,\alpha)), systematic study</td>
<td>8</td>
</tr>
</tbody>
</table>

*) gross FP-mixtures

+) several reactions not specified in detail
1.3. Decay data

<table>
<thead>
<tr>
<th>FP</th>
<th>data type</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn-75</td>
<td>nucl. spectroscopy</td>
<td>83</td>
</tr>
<tr>
<td>Zn-77</td>
<td>nucl. spectroscopy</td>
<td>83</td>
</tr>
<tr>
<td>As-77</td>
<td>E_γ, I_γ, $I_{K\chi}$ (absol.)</td>
<td>(29)</td>
</tr>
<tr>
<td>As-78</td>
<td>E_γ, I_γ, decay-scheme</td>
<td>22</td>
</tr>
<tr>
<td>Br-82</td>
<td>$T_{1/2}$</td>
<td>19</td>
</tr>
<tr>
<td>Br-88</td>
<td>I_γ</td>
<td>124</td>
</tr>
<tr>
<td>Kr-85</td>
<td>I_γ (absolute)</td>
<td>19</td>
</tr>
<tr>
<td>Kr-90</td>
<td>I_γ</td>
<td>124</td>
</tr>
<tr>
<td>Rb-88</td>
<td>Q_B</td>
<td>42</td>
</tr>
<tr>
<td>Rb-89</td>
<td>Q_B, β-spec.</td>
<td>42</td>
</tr>
<tr>
<td>Rb-90</td>
<td>Q_B</td>
<td>42</td>
</tr>
<tr>
<td>Rb-91</td>
<td>Q_B</td>
<td>42</td>
</tr>
<tr>
<td>Rb-92</td>
<td>Q_B</td>
<td>42</td>
</tr>
<tr>
<td>Rb-93</td>
<td>Q_B</td>
<td>42</td>
</tr>
<tr>
<td>Rb-94</td>
<td>β-decay energy</td>
<td>40</td>
</tr>
<tr>
<td>Rb-95</td>
<td>$T_{1/2}$, γ-ce-spec.</td>
<td>43</td>
</tr>
<tr>
<td>Rb-96</td>
<td>β-decay energy</td>
<td>40</td>
</tr>
<tr>
<td>Rb-97</td>
<td>$T_{1/2}$, γ-ce-spec.</td>
<td>43</td>
</tr>
<tr>
<td>Rb-98</td>
<td>$T_{1/2}$, γ-ce-spec.</td>
<td>43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FP</th>
<th>data type</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr-90</td>
<td>β-spectr., E_B</td>
<td>11</td>
</tr>
<tr>
<td>Sr-93</td>
<td>$T_{1/2}$</td>
<td>72</td>
</tr>
<tr>
<td>Sr-94</td>
<td>$T_{1/2}$, β, γ-singles, coinc.</td>
<td>74</td>
</tr>
<tr>
<td>Sr-95</td>
<td>$T_{1/2}$, γ-ce-spec.</td>
<td>43</td>
</tr>
<tr>
<td>Sr-97</td>
<td>$T_{1/2}$, γ-ce-spec.</td>
<td>43</td>
</tr>
<tr>
<td>Sr-98</td>
<td>γ-angular correl.</td>
<td>102</td>
</tr>
<tr>
<td>Sr-99</td>
<td>$T_{1/2}$, γ-ce-spec.</td>
<td>43</td>
</tr>
<tr>
<td>Sr-100</td>
<td>$T_{1/2}$, γ-ce-spec.</td>
<td>43</td>
</tr>
<tr>
<td>Sr-101</td>
<td>$T_{1/2}$, γ-ce-spec.</td>
<td>43</td>
</tr>
<tr>
<td>Y-90</td>
<td>β-spec.</td>
<td>11</td>
</tr>
<tr>
<td>Y-100</td>
<td>$T_{1/2}$, γ-ce-spec.</td>
<td>43</td>
</tr>
<tr>
<td>Y-102</td>
<td>γ-singles, coinc.</td>
<td>34</td>
</tr>
<tr>
<td>Zr-95</td>
<td>E_γ, I_γ, $I_{K\chi}$ (absol.)</td>
<td>29</td>
</tr>
<tr>
<td>Zr-97</td>
<td>γ-angular correl.</td>
<td>102</td>
</tr>
<tr>
<td>Zr-99</td>
<td>I_γ</td>
<td>124</td>
</tr>
<tr>
<td>Zr-100</td>
<td>I_γ</td>
<td>124</td>
</tr>
<tr>
<td>Nb-93m</td>
<td>$T_{1/2}$, ce, x-rays</td>
<td>14</td>
</tr>
<tr>
<td>Nb-95</td>
<td>$T_{1/2}$</td>
<td>19</td>
</tr>
<tr>
<td>Nb-99</td>
<td>I_γ</td>
<td>124</td>
</tr>
<tr>
<td>Nb-101</td>
<td>I_γ</td>
<td>124</td>
</tr>
<tr>
<td>Nb-102</td>
<td>I_γ</td>
<td>124</td>
</tr>
</tbody>
</table>
1.3. Decay data (cont'd)

<table>
<thead>
<tr>
<th>FP</th>
<th>data type</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb-103</td>
<td>γ-singles+coinc.</td>
<td>35</td>
</tr>
<tr>
<td>Nb-105</td>
<td>γ-singles+coinc.</td>
<td>35</td>
</tr>
<tr>
<td>Nb-106</td>
<td>γ-singles+coinc.</td>
<td>34</td>
</tr>
<tr>
<td>Mo-99</td>
<td>E_γ, I_γ</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(105)</td>
</tr>
<tr>
<td>Tc</td>
<td>$T_{1/2}$, γ-spec., short lived isotopes</td>
<td>79</td>
</tr>
<tr>
<td>Tc-99m</td>
<td>I_γ (absol.)</td>
<td>19</td>
</tr>
<tr>
<td>Tc-103</td>
<td>$E_\gamma, I_\gamma, I_\gamma, I_\beta$</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>124</td>
</tr>
<tr>
<td>Ru</td>
<td>$T_{1/2}$, γ-spec., short lived isotopes</td>
<td>79</td>
</tr>
<tr>
<td>Ru-106</td>
<td>$E_\gamma, I_\gamma, I_{KX}$ (absol.)</td>
<td>29</td>
</tr>
<tr>
<td>Rh</td>
<td>$T_{1/2}$, γ-spec., short lived isotopes</td>
<td>79</td>
</tr>
<tr>
<td>Rh-106</td>
<td>$E_\gamma, I_\gamma, I_{KX}$ (absol.)</td>
<td>29</td>
</tr>
<tr>
<td>Pd</td>
<td>$T_{1/2}$, γ-spec., short lived isotopes</td>
<td>79</td>
</tr>
<tr>
<td>Pd-109</td>
<td>$T_{1/2}$</td>
<td>19</td>
</tr>
<tr>
<td>Ag-108m</td>
<td>$E_\gamma, I_\gamma, I_{KX}$ (absol.)</td>
<td>29</td>
</tr>
<tr>
<td>Ag-108</td>
<td>$E_\gamma, I_\gamma, I_{KX}$ (absol.)</td>
<td>29</td>
</tr>
<tr>
<td>Ag-110m</td>
<td>γ singles + coinc.</td>
<td>32</td>
</tr>
<tr>
<td>Ag-110</td>
<td>γ singles + coinc.</td>
<td>32</td>
</tr>
<tr>
<td>Ag-114</td>
<td>nucl. spectroscopy</td>
<td>83</td>
</tr>
<tr>
<td>Ag-115</td>
<td>Q_β</td>
<td>81</td>
</tr>
<tr>
<td>Ag-116</td>
<td>Q_β</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>nucl. spectroscopy</td>
<td>83</td>
</tr>
<tr>
<td>Ag-117</td>
<td>Q_β</td>
<td>81</td>
</tr>
<tr>
<td>Ag-118</td>
<td>Q_β</td>
<td>81</td>
</tr>
<tr>
<td>Ag-119</td>
<td>Q_β</td>
<td>81</td>
</tr>
<tr>
<td>Ag-120</td>
<td>Q_β</td>
<td>81</td>
</tr>
<tr>
<td>Ag-121</td>
<td>Q_β</td>
<td>81</td>
</tr>
<tr>
<td>Ag-122</td>
<td>nucl. spectroscopy</td>
<td>102</td>
</tr>
<tr>
<td>Ag-124</td>
<td>γ-spectroscopy</td>
<td>102</td>
</tr>
<tr>
<td>Cd-119</td>
<td>Q_β</td>
<td>81</td>
</tr>
<tr>
<td>Cd-120</td>
<td>$Q_\beta n$</td>
<td>81</td>
</tr>
<tr>
<td>Cd-121</td>
<td>Q_β</td>
<td>81</td>
</tr>
<tr>
<td>Cd-122</td>
<td>nucl. spectroscopy</td>
<td>83</td>
</tr>
<tr>
<td>In-115m</td>
<td>$T_{1/2}$, I_γ (absol.)</td>
<td>19</td>
</tr>
<tr>
<td>In-131</td>
<td>nucl. spectroscopy</td>
<td>(84)</td>
</tr>
<tr>
<td>In-132</td>
<td>$T_{1/2}, \gamma$-spectroscopy</td>
<td>87</td>
</tr>
<tr>
<td>In-133</td>
<td>$T_{1/2}, \gamma$-spectroscopy</td>
<td>88</td>
</tr>
<tr>
<td>Sn-119</td>
<td>level $T_{1/2}$</td>
<td>12</td>
</tr>
<tr>
<td>Sn-124</td>
<td>γ-angular correl.</td>
<td>102</td>
</tr>
<tr>
<td>Sn-129</td>
<td>$T_{1/2}, \gamma$-spectroscopy</td>
<td>3</td>
</tr>
<tr>
<td>A=133</td>
<td>decay properties</td>
<td>(45)</td>
</tr>
<tr>
<td>Sn-133</td>
<td>nucl. spectroscopy</td>
<td>84</td>
</tr>
<tr>
<td>Sb-121</td>
<td>level $T_{1/2}$</td>
<td>12</td>
</tr>
<tr>
<td>Sb-125</td>
<td>$E_\gamma, I_\gamma, X-rays$</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>$E_\gamma, I_\gamma, I_{KX}$ (absol.)</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>I_γ</td>
<td>68</td>
</tr>
<tr>
<td>Sb-129</td>
<td>$T_{1/2}, \gamma$-spectroscopy</td>
<td>3</td>
</tr>
</tbody>
</table>
1.3. Decay data (cont'd)

<table>
<thead>
<tr>
<th>FP</th>
<th>data type</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-131</td>
<td>(E_\gamma, I_\gamma, I_{\text{KX}}) (absol)</td>
<td>29</td>
</tr>
<tr>
<td>1-132</td>
<td>(E_\gamma, I_\gamma, I_{\text{KX}}) (absol)</td>
<td>29</td>
</tr>
<tr>
<td>1-139</td>
<td>nucl. spectroscopy</td>
<td>83</td>
</tr>
<tr>
<td>1-140</td>
<td>nucl. spectroscopy</td>
<td>83</td>
</tr>
<tr>
<td>Xe-133</td>
<td>(T_{1/2})</td>
<td>19</td>
</tr>
<tr>
<td>Xe-139</td>
<td>(I_\gamma)</td>
<td>124</td>
</tr>
<tr>
<td>Xe-140</td>
<td>(I_\gamma)</td>
<td>124</td>
</tr>
<tr>
<td>A=124</td>
<td>(I_\gamma) (rel.), short lived isobars</td>
<td>45</td>
</tr>
<tr>
<td>A=143</td>
<td>(I_\gamma) (rel.), short lived isobars</td>
<td>45</td>
</tr>
<tr>
<td>A=144</td>
<td>(I_\gamma) (rel.), short lived isobars</td>
<td>45</td>
</tr>
<tr>
<td>Cs</td>
<td>(Q_B, \beta)-spectr., Cs isotopes</td>
<td>(102)</td>
</tr>
<tr>
<td>Cs-133</td>
<td>level (T_{1/2})</td>
<td>12</td>
</tr>
<tr>
<td>Cs-134m</td>
<td>(T_{1/2})</td>
<td>19</td>
</tr>
<tr>
<td>Cs-134</td>
<td>(T_{1/2})</td>
<td>19</td>
</tr>
<tr>
<td>Cs-137</td>
<td>(T_{1/2}, I_\gamma) (absol.)</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>(E_\gamma, I_\gamma, I_{\text{KX}}) (absol)</td>
<td>94</td>
</tr>
<tr>
<td>Cs-138</td>
<td>(Q_B)</td>
<td>42</td>
</tr>
<tr>
<td>Cs-139</td>
<td>(Q_B)</td>
<td>42</td>
</tr>
<tr>
<td>Cs-140</td>
<td>(Q_B)</td>
<td>42</td>
</tr>
<tr>
<td>Cs-141</td>
<td>(Q_B) y-singles, coinc.</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>(102)</td>
<td></td>
</tr>
<tr>
<td>Cs-142</td>
<td>(\beta)-decay energy (Q_B)</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(42)</td>
<td></td>
</tr>
<tr>
<td>Cs-143</td>
<td>(\beta)-decay energy (Q_B)</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(42)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FP</th>
<th>data type</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-144</td>
<td>(\beta)-decay energy (Q_B)</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(42)</td>
<td></td>
</tr>
<tr>
<td>Cs-145</td>
<td>(T_{1/2}, \gamma)-singl+coinc (\beta)-decay energy (Q_B)</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>(40)</td>
<td></td>
</tr>
<tr>
<td>Cs-146</td>
<td>(\beta)-decay energy (Q_B)</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(42)</td>
<td></td>
</tr>
<tr>
<td>Cs-147</td>
<td>(T_{1/2}, \gamma)-spec.</td>
<td>(102)</td>
</tr>
<tr>
<td></td>
<td>A=146 (I_\gamma) (rel.), short lived</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>A=147 (I_\gamma) (rel.), short lived</td>
<td>45</td>
</tr>
<tr>
<td>Ba-137m</td>
<td>(T_{1/2})</td>
<td>19</td>
</tr>
<tr>
<td>Ba-140</td>
<td>(E_\gamma, I_\gamma, I_{\text{KX}}) (absol)</td>
<td>(29)</td>
</tr>
<tr>
<td>Ba-143</td>
<td>(T_{1/2})</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>(I_\gamma)</td>
<td>124</td>
</tr>
<tr>
<td>Ba-144</td>
<td>(\beta)-, (\gamma)-singles+coinc.</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>(\gamma) angular correl. (\beta)-, (\gamma)-singles</td>
<td>(102)</td>
</tr>
<tr>
<td></td>
<td>(\gamma) angular correl. (\beta)-, (\gamma)-singles</td>
<td>(102)</td>
</tr>
<tr>
<td>Ba-145</td>
<td>(T_{1/2}, \gamma)-singl+coinc</td>
<td>102</td>
</tr>
<tr>
<td>Ba-146</td>
<td>(\gamma) angular correl. (\beta)-, (\gamma)-singles</td>
<td>(102)</td>
</tr>
<tr>
<td></td>
<td>(\gamma) angular correl. (\beta)-, (\gamma)-singles</td>
<td>(102)</td>
</tr>
<tr>
<td>Ba-147</td>
<td>(T_{1/2}, \gamma)-ce-spectr.</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>(T_{1/2}, \gamma)-singl+coinc</td>
<td>(102)</td>
</tr>
<tr>
<td>Ba-148</td>
<td>(T_{1/2}, \gamma)-ce-spectr.</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>(T_{1/2}, \gamma)-singl+coinc</td>
<td>(102)</td>
</tr>
<tr>
<td>Ba-149</td>
<td>(T_{1/2}, \gamma)-ce-spectr.</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>(T_{1/2}, \gamma)-singl+coinc</td>
<td>(102)</td>
</tr>
<tr>
<td>La-140</td>
<td>(E_\gamma, I_\gamma, I_{\text{KX}}) (absol)</td>
<td>(29)</td>
</tr>
<tr>
<td>La-142</td>
<td>(\beta)-, (\gamma)-singles+coinc.</td>
<td>(102)</td>
</tr>
<tr>
<td>La-144</td>
<td>(\beta)-, (\gamma)-singles+coinc.</td>
<td>(102)</td>
</tr>
<tr>
<td></td>
<td>(I_\gamma)</td>
<td>124</td>
</tr>
<tr>
<td>La-146</td>
<td>(\beta)-, (\gamma)-singles+coinc.</td>
<td>(102)</td>
</tr>
<tr>
<td></td>
<td>(Q_B, \beta)-spec.</td>
<td>(102)</td>
</tr>
</tbody>
</table>
1.3. Decay data (cont'd)

<table>
<thead>
<tr>
<th>FP</th>
<th>data type</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>La-147</td>
<td>$T_{1/2}$, γ-ce-spectr. γ-singles, coinc.</td>
<td>43 (102)</td>
</tr>
<tr>
<td>La-148</td>
<td>$T_{1/2}$, γ-ce-spectr. $T_{1/2}$, γ-spectr. Q_B, β-spectr.</td>
<td>43 (102)</td>
</tr>
<tr>
<td>Ce-141</td>
<td>$T_{1/2}$, I_γ(absol.)</td>
<td>19</td>
</tr>
<tr>
<td>Ce-142</td>
<td>γ angular correl.</td>
<td>102</td>
</tr>
<tr>
<td>Ce-143</td>
<td>I_γ (absolute)</td>
<td>104</td>
</tr>
<tr>
<td>Ce-144</td>
<td>E_γ, I_γ, $I_{K\alpha}$ (absol) E_γ, I_γ, $I_{K\alpha}$ (absol) γ angular correl.</td>
<td>29 (102)</td>
</tr>
<tr>
<td>Ce-146</td>
<td>I_γ (absolute)</td>
<td>104</td>
</tr>
<tr>
<td>Ce-147</td>
<td>$T_{1/2}$, E_γ, I_γ</td>
<td>76</td>
</tr>
<tr>
<td>Ce-149</td>
<td>nucl. spectroscopy</td>
<td>84</td>
</tr>
<tr>
<td>Ce-150</td>
<td>nucl. spectroscopy</td>
<td>84</td>
</tr>
<tr>
<td>Pr-144</td>
<td>E_γ, E_γ, $I_{K\alpha}$ (absol)</td>
<td>29</td>
</tr>
<tr>
<td>Pr-148</td>
<td>β, γ-singles, coinc.</td>
<td>102 (102)</td>
</tr>
<tr>
<td>Pr-150</td>
<td>β, γ-singles+coinc.</td>
<td>102</td>
</tr>
<tr>
<td>Pr-152</td>
<td>$T_{1/2}$, γ-ce-spectr. β, γ-singles+coinc.</td>
<td>43 (102)</td>
</tr>
<tr>
<td>Nd-154</td>
<td>β, γ-singles, coinc.</td>
<td>102</td>
</tr>
<tr>
<td>Pm-152</td>
<td>$T_{1/2}$, I_γ, I_β</td>
<td>103</td>
</tr>
<tr>
<td>Pm-153</td>
<td>$T_{1/2}$, I_γ, I_β</td>
<td>102</td>
</tr>
<tr>
<td>Pm-154</td>
<td>$T_{1/2}$, I_γ, I_β</td>
<td>102</td>
</tr>
<tr>
<td>Pm-155</td>
<td>$T_{1/2}$, E_γ, I_γ</td>
<td>103</td>
</tr>
<tr>
<td>Eu-152</td>
<td>$T_{1/2}$ ce: k/lm ratio</td>
<td>19 (13)</td>
</tr>
<tr>
<td>Eu-160</td>
<td>$T_{1/2}$</td>
<td>103</td>
</tr>
<tr>
<td>Gd-162</td>
<td>comments on decay</td>
<td>103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FP</th>
<th>data type</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd-163</td>
<td>decay properties</td>
<td>103</td>
</tr>
<tr>
<td>Tb-165</td>
<td>$T_{1/2}$, E_γ, I_γ</td>
<td>103</td>
</tr>
<tr>
<td>Dy-168</td>
<td>$T_{1/2}$, E_γ, I_γ</td>
<td>103</td>
</tr>
<tr>
<td>Many</td>
<td>transition life times γ branching decay scheme studies</td>
<td>65 (82) (90)</td>
</tr>
</tbody>
</table>
1.4. Delayed neutron (del-n) data

<table>
<thead>
<tr>
<th>FP</th>
<th>data type</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-85</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Br</td>
<td>P_n, Br precursors</td>
<td>102</td>
</tr>
<tr>
<td>Br-87</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Br-88</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Br-89</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Br-90</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Br-91</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Br-92</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Kr</td>
<td>P_n, Kr precursors</td>
<td>102</td>
</tr>
<tr>
<td>Rb</td>
<td>P_n, Rb precursors</td>
<td>102</td>
</tr>
<tr>
<td>Rb-92</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Rb-93</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Rb-94</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Rb-95</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Rb-96</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Rb-97</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Rb-98</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Sr-97</td>
<td>$T_{1/2}$, P_n</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FP</th>
<th>data type</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr-98</td>
<td>$T_{1/2}$, P_n</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>Y-97</td>
<td>$T_{1/2}$, P_n</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>Y-98</td>
<td>$T_{1/2}$, P_n</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>Y-99</td>
<td>$T_{1/2}$, P_n</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>Ag</td>
<td>P_n, Ag precursors</td>
<td>102</td>
</tr>
<tr>
<td>Ag-121</td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>Ag-122</td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>Ag-123</td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>Ag-124</td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>In</td>
<td>P_n, In precursors</td>
<td>102</td>
</tr>
<tr>
<td>In-127</td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>In-128</td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>In-129</td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>In-130</td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>In-132</td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>In-133</td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>Sb-135</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Te-136</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>I</td>
<td>P_n, I precursors</td>
<td>102</td>
</tr>
</tbody>
</table>
1.4. Delayed neutron (del-n) data (cont'd)

<table>
<thead>
<tr>
<th>FP</th>
<th>data type</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-137</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>I-138</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>I-139</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>I-140</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>I-141</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Xe</td>
<td>P_n, Xe precursors</td>
<td>102</td>
</tr>
<tr>
<td>Cs</td>
<td>P_n, Cs precursors</td>
<td>102</td>
</tr>
<tr>
<td>Cs-141</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Cs-142</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Cs-143</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Cs-144</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Cs-145</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Cs-146</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Cs-147</td>
<td>E-spec., avg. E_n</td>
<td>47</td>
</tr>
<tr>
<td>Ba-146</td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>Ba-147</td>
<td>$T_{1/2}$, P_n</td>
<td>73</td>
</tr>
<tr>
<td>Ba-148</td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>La-146</td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>La-147</td>
<td>$T_{1/2}$, P_n</td>
<td>73</td>
</tr>
<tr>
<td>La-148</td>
<td>$T_{1/2}$, P_n, avg. E</td>
<td>114</td>
</tr>
<tr>
<td>Ce-147</td>
<td>P_n</td>
<td>(80)</td>
</tr>
<tr>
<td>Ce-148</td>
<td>P_n</td>
<td>(80)</td>
</tr>
<tr>
<td>Ce-149</td>
<td>P_n</td>
<td>(80)</td>
</tr>
<tr>
<td>Ce-147</td>
<td>P_n</td>
<td>(80)</td>
</tr>
<tr>
<td>Pr-147</td>
<td>P_n</td>
<td>(80)</td>
</tr>
<tr>
<td>Pr-149</td>
<td>P_n</td>
<td>(80)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nuclide</th>
<th>neutron energy</th>
<th>data type</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-235</td>
<td>thermal</td>
<td>group spec.(time)</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>time depend. E-spec.</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>monoenergetic</td>
<td>equil. spectra</td>
<td>95</td>
</tr>
<tr>
<td>Pu-239</td>
<td>monoenergetic</td>
<td>energy spec.(time)</td>
<td>116</td>
</tr>
<tr>
<td>Many</td>
<td>0 - 3.6 MeV</td>
<td>equil. spectra</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>energy spec.(time)</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>group spec.(time)</td>
<td>46</td>
</tr>
</tbody>
</table>
1.5. Decay heat

<table>
<thead>
<tr>
<th>nuclide</th>
<th>neutron energy</th>
<th>reaction</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th-232</td>
<td>fast 14 MeV</td>
<td>β, γ, total</td>
<td>77</td>
</tr>
<tr>
<td>U(nat.)</td>
<td>fast</td>
<td>β, γ, total</td>
<td>77</td>
</tr>
<tr>
<td>U-233</td>
<td>fast</td>
<td>β, γ, total</td>
<td>77</td>
</tr>
<tr>
<td>U-235</td>
<td>thermal</td>
<td>total</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>sum-β-spectra</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>fragment β-spec.</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>β, γ, total</td>
<td>77</td>
</tr>
<tr>
<td>U-238</td>
<td>fast 14 MeV</td>
<td>β, γ, total</td>
<td>77</td>
</tr>
<tr>
<td>Pu-239</td>
<td>thermal</td>
<td>sum-β-spectra</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>thermal</td>
<td>fragment β-spec.</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>fast</td>
<td>β, γ, total</td>
<td>(80)</td>
</tr>
</tbody>
</table>
2. COMPILATIONS AND EVALUATIONS

<table>
<thead>
<tr>
<th>data category</th>
<th>further specifications</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>fission yields</td>
<td>charge distr., U-236, Cf-252 spont. fission</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>selected compil. f. reactor dosimetry</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>compilation (Crouch for UKND-file)</td>
<td>(141)</td>
</tr>
<tr>
<td></td>
<td>complete eval. (Crouch for UKND-file)</td>
<td>(142)</td>
</tr>
<tr>
<td></td>
<td>evaluated file (ENDF/B-V,VI)</td>
<td>(147,148)</td>
</tr>
<tr>
<td></td>
<td>eval. file (ENDF/B-V,VI, formerly Rider)</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>summary of data contained in ENDF/B-V</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>indep. yields, charge distrib.</td>
<td>(155)</td>
</tr>
<tr>
<td></td>
<td>predicted mass yields vs En, U-233,35,38</td>
<td>156</td>
</tr>
<tr>
<td>cross sections</td>
<td>Cs-133 eff. res. integral</td>
<td>(130)</td>
</tr>
<tr>
<td></td>
<td>integral fast capture, calc. + measured</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>critical intercomparison, Gd isotopes</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>new evaluation of Pd-105,107</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>capt, scat, total, model calc., Nb, Rh</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>capture, model calc. several FPs</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>integral test of JENDL-2 FP library</td>
<td>136,137</td>
</tr>
<tr>
<td></td>
<td>evaluation: 80 FP (Z=35-64) for JENDL-2</td>
<td>136,137</td>
</tr>
<tr>
<td></td>
<td>RCN-2, RCN-3 evaluation, integral tests</td>
<td>138,139</td>
</tr>
<tr>
<td></td>
<td>pseudo-FP 26 group cross sections</td>
<td>138,139</td>
</tr>
<tr>
<td></td>
<td>evaluated file (ENDF/B-V,VI)</td>
<td>(147,148)</td>
</tr>
<tr>
<td></td>
<td>summary of data contained in ENDF/B-V</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>thermal + resonance data, Pm isotopes</td>
<td>157</td>
</tr>
<tr>
<td>decay data</td>
<td>Nuclear Data Sheets for A=102,105,110</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>compil. + eval., all data, French file</td>
<td>(128)</td>
</tr>
<tr>
<td></td>
<td>T1/2, decay scheme data (42 FP)</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>compilation, gamma-ray catalog</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>compil. + eval. (JNDC) for decay heat calc.</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>selected compil. f. reactor dosimetry</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>complete file (UK working group)</td>
<td>144,145</td>
</tr>
<tr>
<td></td>
<td>evaluated file (ENDF/B-V,VI)</td>
<td>(147,148)</td>
</tr>
<tr>
<td></td>
<td>all data, compilation for ENDF/B-V</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>summary of data contained in ENDF/B-V</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>eval. of beta radiation data, 536 FP</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>compil. of gamma radiation data, 536 nucl.</td>
<td>153,154</td>
</tr>
<tr>
<td>delayed neutrons</td>
<td>compilation (JNDC) for decay heat calc.</td>
<td>(135)</td>
</tr>
<tr>
<td></td>
<td>T1/2, Pn, del-n yield (UKND-file)</td>
<td>(143)</td>
</tr>
<tr>
<td></td>
<td>eval., equilibrium spectra</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>total spectra from precursor data</td>
<td>(147,148)</td>
</tr>
<tr>
<td></td>
<td>evaluated and calculated spectra</td>
<td>152</td>
</tr>
<tr>
<td>decay heat</td>
<td>evaluation (JNDC working group)</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>fitted functions for U-235, 238, Pu-239</td>
<td>144,145</td>
</tr>
</tbody>
</table>
I. MEASUREMENTS

Unchanged contributions are marked as such.

Updates: revisions with respect to the last issue are marked by a vertical bar on the left margin of the text.

New contributions show no marks.
ARGENTINE

Laboratory: Departamento de Física
Comisión Nacional de Energía Atómica
Av. del Libertador 8250
1429 Buenos Aires, Argentina

Facilities: On-line electromagnetic isotope separator
coupled with a neutron generator for
$^{235}\text{U}(n,\alpha)$ products studies (IALE facility).

Names: H.Huck, M.L.Pérez and J.J.Rossi

Experiment: Half lives and partial decay schemes for the
^{129}Sn (2.4 min) and ^{129}Sn (6.9 min) and ^{129}Sb
isotopes were established.

Method: The ^{235}U thermal fission products were
electromagnetically separated and mass 129
collected on a movable tape collector. Half
lives determinations were performed by multi-
scaling the gamma-spectra. Growing-decay
curves were taken in order to assign a new
half-life no previously reported. Gamma-ray
energies and intensities as well as gamma-
gamma coincidences were used to construct the
decay schemes.

Accuracy: Varying

Completion date: Completed

CNEA NT 5/82 pag b.49, Progress Report
1980-1981, Department of Physics CNEA, Buenos
Aires, Argentina.
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Method</th>
<th>Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Experiment</td>
<td>Relative yields of stable tellurium isotopes in neutron induced fission.</td>
<td>Measurements of 233U, 235U.</td>
</tr>
</tbody>
</table>

Laboratory and address: Australian Atomic Energy Commission, Research Establishment, Lucas Heights Research Laboratories, Lucas Heights, NSW 2234, Australia.

Names: J.W. Boldeman, B.J. Allen, D.W. Lang, R.L. Walsh

Facilities: 3 MeV Van de Graaff accelerator, HIFAR and Moata reactors.
5. **Experiment:** Mass yields in neutron fission of 230Th.
 Method: 3 MeV Van de Graaff accelerator: surface barrier detectors.
 Completion date: December 1983

6. **Experiment:** Mass resolution correction in double-energy fission measurements.
 Method: Calculation of and correction for mass resolution by operator and iterative methods. For 252Cf(sf) and 239Pu(n,f).
 Completion date: Completed

7. **Experiment:** Mass yields and kinetic energies for spontaneous fission and thermal neutron fission of plutonium isotopes (in collaboration with J. Trochon et al., Bruyères-le-Châtel).
 Method: Measurements of: 238-243Pu.
 Completion date: June 1984
 Publication: H. Abou Yehia (g), J.W. Boldeman, Y. Pranal (g), and J. Trochon (g).

(a) Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.
(b) James Cook University, Queensland, Australia
(c) Central Bureau for Nuclear Measurements, Geel, Belgium
(d) Rijksuniversitair Centrum, Antwerp, Belgium
(e) University of Wollongong, NSW, Australia
(f) Western Australian Institute of Technology, South Bentley, W.A.
(g) Bruyères-le-Châtel, France.

List of nuclides for first experiment; correction factors for capture cross sections published earlier are given for:
86Sr, 89Y, $^{90-92}$Zr, $^{92,94-98}$Mo, $^{106,108,110-114}$Cd, $^{134-138}$Ba,
139La, 140Ce, 141Pr, $^{142-146}$Nd.
Laboratory and address: Nuclear Physics Laboratory
Proeftuinstraat 42
B-9000 Gent, Belgium

Facilities: Linear Electron Accelerator, Gent
Reactor BRI, SCK/CEN Mol

Experiment: Kinetic energy and fragment mass distributions for $^{240,242,244}_{\text{Pu sf}}$, $^{239,241}_{\text{Pu(n_{th},f)}}$ and $^{240,242,244}_{\text{Pu(\gamma,f)}}$.

Method: Measured: photofission yields, fragment kinetic energies;
deduced: $\sigma(\gamma,f)$, kinetic energy- and provisional mass distributions with changing excitation energy of the compound system.

Completion date: $^{239,240}_{\text{Pu}}$: November 1980
$^{241,244}_{\text{Pu}}$: September 1982
$^{242}_{\text{Pu}}$: February 1983

Publications:
BELGIUM

Laboratory and address: - Nuclear Physics Laboratory
Proeftuinstraat 42
B-9000 Gent, Belgium
- Physikalische Chemie, Philipps-Universität
D-3550 Marburg, W.Germany

Names: D.De Frenne, H.Thierens, B.Proot, E.Jacobs, P.De Gelder, A.De Clercq
and W.Westmeier a).

Facilities: Linear Electron Accelerator, Gent.

Experiment: Charge and isotopic distribution, isomeric ratios and initial
fragment spins for 235,238U(γ,f).

Method: Measured: fission product γ-ray spectra; deduced: fractional
independent and cumulative yields.

Completion date: beginning 1983.

 C25, (1982) 1546
- D.De Frenne, H.Thierens, B.Proot, E.Jacobs, P.De Gelder and A.De Clercq, Proc. of the International Conference
BELGIUM

Laboratory and address: Nuclear Physics Laboratory, Proeftuinstraat 86, B-9000 GENT, Belgium

SCK/CEN, B-2400 MOL, Belgium

Institut de Physique Nucléaire, 69622 VILLEURBANNE, France

Institut Laue-Langevin, BPn.156X, 38042 GRENOBLE, France

Names: C. Wagemans, E. Allaert, P. D'Hondt, A. Emsallem, R. Brissot

Facilities: High Flux Reactor, Institut Laue-Langevin, GRENOBLE

Experiments: Thermal neutron induced (n,α) reactions on fission products.

Method: Charged particle detection with surface barrier detectors

Completion date: Systematic study in progress

BELGIUM
(same as INDC(NDS)-130)

Laboratory and address: Nuclear Physics Laboratory, Proeftuinstraat 86, B-9000 GENT, Belgium
SCK/CEN, B-2400 MOL, Belgium
Institut Laue-Langevin, B.P. N.156X GRENOBLE, France

Names: P. D'Hondt, C. Wagemans, A. De Clercq, E. Allaert, R. Brissot

Facilities: High Flux Reactor, Institut Laue Langevin, GRENOBLE

Experiments: Absolute yields and energy distributions of the charged light particles emitted during the thermal neutron induced fission of ^{233}U, ^{235}U, ^{237}Np, ^{239}Pu and ^{241}Am

Method: The charged particles are identified with surface barrier (AE-E) telescope detectors

Completion date: ^{235}U completed; other isotopes in progress

Publications:
1) C. Wagemans et al., Report BLG 539 (1980)
3) C. Wagemans et al., Nucl. Phys. A 369 (1981) 1
Laboratory and address: CEC - JRC, Central Bureau for Nuclear Measurements, B-2440 GEEL, Belgium

SCK/CEN, B-2400 MOL, Belgium

Names: C. Wagemans, E. Allaert, G. Wegener-Penning, A.J. Deruytter

Facilities: Neutron time-of-flight spectrometer at the 150 MeV Linac

Experiments: Fission fragments kinetic energy and mass distribution for ^{238}Pu (s.f.), ^{239}Pu (n$_{th}$,f), ^{240}Pu (s.f.), ^{241}Pu (n$_{th}$,f), ^{242}Pu (s.f.) and ^{244}Pu (s.f.)

Method: Coincident fission fragments detected with surface barrier detectors. Deduced fragment mass and energy distributions

E. Allaert et al., Verhandl. DPG VI 18, 1150 (1983)
1. Names:
H.H. Hansen.

Facilities:
Double focusing magnetic β-ray spectrometer.

Experiments:
Determination of decay properties of 90Sr/90Y: endpoint energies of the β-spectra, spectrum shapes and the ratio of the number of β-particles emitted in both decays.

Methods:
Recording of the β-ray spectra by scanning with small equal current increments. Separate treatment of the spectra in the energy regions between 550 and 2200 keV (90Y decay) and between 100 and 550 keV (90Sr decay).

Shape correction coefficients were deduced from calculations of the spectrum shapes. From the Kurie plots values of the endpoint energies were obtained. After extrapolation of the Kurie plots to energy $E = 0$, the complete spectra of emitted β-particles have been calculated.

Accuracies:
Random and systematic uncertainties have been combined corresponding to a 68% confidence level: 0.12 and 0.29% on the endpoint energies of 90Y/90Sr β-spectra respectively; 30 and 22% on the skope correction coefficients of the β-spectrum in the 90Y decay and that in the 90Sr decay, respectively; 1% was found on the relative intensities of both β-spectra.

Publication:
2. Names

H.H. Hansen, D. Mouchel, A. Nylandsted Larsen.

Facilities

Various scintillation detectors in slow and/or fast coincidence arrangements.

Experiments

Determination of half lives of excited nuclear levels in the nanosecond and microsecond region in 119Sn, 121Sb, 133Cs and 181Ta.

Methods

Measurements were carried out using the method of delayed coincidences with a time-to-amplitude converter operated in the start-stop mode. In the nanosecond time range, jitter, drift and walk phenomena are serious sources of errors. They have been minimized by a careful time pick-off with fast timing detectors and electronics. In the microsecond time range, the ratio of true delayed to chance coincidences influences considerably the final accuracy. A series of measures have been applied to reduce the chance coincidence rates.

Accuracies

Random and systematic uncertainties have been combined corresponding to a 68% confidence level. The following values were found: 2% (6.05 μs level at 6.2 keV in 181Ta), 0.4% (18.03 ns level at 23.9 keV in 119Sn), 0.9% (3.46 ns level at 37.1 keV in 121Sb), 0.5% (6.23 ns level at 81.0 keV in 133Cs), 0.5% (10.67 ns level at 482.2 keV in 181Ta) and 0.8% (17.64 μs level at 615.3 keV in 181Ta).

Publications

Facilities : Double focusing magnetic β-ray spectrometer.

Experiments : Determination of the internal conversion ratio K/λ_{M^+} for four pure $E2$ transitions in the decays of ^{152}Eu and ^{192}Ir.

Methods : Recording of electron spectra by scanning with small equal current increments. Background events and contributions of the continuous β-spectra have been subtracted. The intensities of the different conversion lines have been obtained by adding the counts registered for the various potentiometer readings.

Accuracies : Random and systematic uncertainties have been combined corresponding to a 68 % confidence level: they range between 1.4 and 3.8 %. The agreement between the experimental results and theoretical calculations is very good (within 1 %).

E.E.C. BELGIUM

Laboratory and address: CEC-JRC, Central Bureau for Nuclear Measurements, Geel, Belgium.

Names: D. Reher, R. Vaninbroukx.

Facilities: Pressurized 4π proportional counter. Solid state photon and electron spectrometers.

Experiments: Determination of decay parameters of ^{93m}Nb: internal conversion data, half life, KX-ray emission probability.

Methods: Measurement of the conversion electrons with the pressurized 4π counter and with an open solid state detector. Remeasurement at regular intervals of the KX-ray emission rates from 5 different sources. Measurement of KX-ray emission probability using calibrated photon detectors.

Accuracies: Accuracies corresponding to the 68% confidence level and taking into account random and systematic uncertainties:

- conversion data: 7 to 17%
- half life: 0.9%
- KX-ray emission probability: 2.6%.

E.E.C. Belgium

Laboratory and address: JRC, CBNM, Geel, Belgium
*Rijksuniversitair Centrum, Antwerpen, Belgium

Names: A. Brusegan, E. Cornelis, F. Corvi, G. Rohr, R. Shelley, T. van der Veen, G. Vanpraet

Facilities: Neutron time-of-flight spectrometer at the 150 MeV Linac (pulse width: 4 nsec)

Experiments: Neutron capture cross sections for $^{104, 105, 106, 108, 110}$Pd and 149Sm up to 500 keV

Methods: Capture detectors: C.D.6, C.F.6 - detectors using Maier Leibnitz method
Neutron Flux detectors: 6Li-glass and 10B-slab

Accuracy: 5-10% in the cross section

Completion date: Cross section for 149Sm end of 1983

Publication: Average Capture Cross Section of the Fission Product Nuclei $^{104, 105, 106, 108, 110}$Pd
E. Cornelis, G.J. Vanpraet, C. Bastian, G. Rohr, R. Shelley, T. van der Veen
Nuclear Data for Science and Technology, Antwerpen (1982) p. 222
LABORATORY AND ADDRESS:

Instituto de Engenharia Nuclear
Comissão Nacional de Energia Nuclear
C.P. 2186
20001 Rio de Janeiro, Brasil.

NAMES:

A.V. Bellido

FACILITIES:

Argonaut Reactor

EXPERIMENT:

Measurement of fission product yields for ^{238}U fission induced by fission spectrum neutrons.

METHOD:

Separation of the irradiated samples in lanthanide and non-lanthanide fractions. Identification and activity measurements of the fission products by γ-ray spectrometry. Calculation of cumulative yields by substraction the ^{235}U fission contribution and relation of the saturation activities for each nuclide, in depleted and natural uranium, with the activities of reference nuclides. (Yields of reference nuclides: $^{142}\text{La} = 4.95$ and $^{92}\text{Sr} = 4.10$).

ACCURACY:

Better than 10%

COMPLETION DATE:

1983
BULGARIA

Laboratory and address: University of Sofia, Faculty of Physics, Department of Atomic Physics, 1126 Sofia, Bulgaria

1. Names: E. Dobreva, N. Nenoff
M. Iovtshev (Institute for Nuclear Research and Nuclear Energy, Sofia)

Facility: Experimental reactor of the Institute for Nuclear Research and Nuclear Energy

Experiment: Measured yields of 131I, 132I, 133I and 134I for the epicadmium reactor neutron induced fission of 238U. Deduced fractional independent yields for 132I, 133I and 134I; most probable charge for the isobaric chains 132, 133 and 134; yields of precursor nuclides and chain yields for mass 131, 132, 133 and 134 relative to the cumulative yield of 135I.

Method: Radiochemical separation of I, Ge(Li) γ-ray counting. Five independent runs with equal irradiation and different separation time.

Accuracy: Between 5 and 10 %; 28 % for the lowest yield isotope (132I).

Completion date: November 1979
BULGARIA

(cont'd)

Publications:

2. Names:

N. Nenoff et al

Experiment:

Determination of 14 MeV neutron reaction cross sections for:

\[^{162}\text{Dy}(n,p) \] \[^{162}\text{Tb}, \] \[^{174}\text{Yb}(n,p) \] \[^{174}\text{Tm}, \] \[^{176}\text{Yb}(n,p) \] \[^{176}\text{Tm}, \] \[^{176}\text{Yb}(n,\alpha) \] \[^{173}\text{Er}. \]

Method:

Activation technique

Completion date:

In progress, only preliminary data obtained.

Publication:

Laboratory and address: Chalk River Nuclear Laboratories
Chalk River, Ontario
Canada KOJ 1J0

Names: A.R. Rutledge*, L.V. Smith and J.S. Merritt*

Facilities:
1) $4\pi\gamma$ ionization chamber
2) 4π gas flow proportional counter
3) $4\pi\beta-\gamma$ coincidence system
4) scintillation spectrometer
5) Ge(Li) detector
6) Radioisotope standardization laboratory

Experiment:
Half-life values for ^{82}Br, ^{95}Nb, $^{99}\text{Tc}^m$, ^{109}Pd, $^{115}\text{In}^m$,
^{133}Xe, ^{134}Cs, $^{134}\text{Cs}^m$, $^{137}\text{Ba}^m$, ^{137}Cs, ^{141}Ce and $^{152}\text{Eu}^m$.
Gamma-ray emission probabilities for ^{85}Kr, $^{99}\text{Tc}^m$, $^{115}\text{In}^m$,
^{137}Cs and ^{141}Ce.

Method: $4\pi\gamma$ ionization chamber and 4π gas flow proportional
counter used for half-lives; $4\pi\gamma$ ionization chamber,
$4\pi\beta-\gamma$ coincidence system, and scintillation spectrometer
used for γ-ray emission probabilities.

Accuracy: $T_1^\pm = \pm 1.4\%$ for ^{137}Cs, $<\pm 0.22\%$ for $^{115}\text{In}^m$ and ^{152}Eu,
$\pm 0.02-0.09\%$ for remainder.
$P_\gamma = \pm 6.5\%$ for ^{85}Kr; $0.2-0.9\%$ for remainder.

Completion date: Results published March 1980; part of the work is ongoing.
Measurements on ^{137}Cs are preliminary and continuing.

Discrepancies to other data:
1) ^{137}Cs half-life 2.6\% shorter.
2) $^{85}\text{Kr} P_\gamma$ 6-7\% smaller.

Publication: Decay Data for Radionuclides used for the Calibration of
α- and γ-ray Spectrometers. A.R. Rutledge, L.V. Smith
and J.S. Merritt, Atomic Energy of Canada Limited,
Report AECL-6692, 1980. Also published in:
NBS Special Publication No. 626 "Nuclear Data for the
Efficiency Calibration of Germanium Spectrometer Systems",
D.D. Hopper and F.J. Schima, Editors, National Bureau of

*retired
Laboratory and Address: Atomic Energy of Canada Limited Research Company, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada, K0J 1J0

Names: L.W. Green and W.J. Edwards

Facilities: NRU Reactor

Experiment: Effective Neutron Capture Cross Section of 147Nd in a Thermal Reactor.

Method: 1. Gamma spectrometric determination of depletion of 147Nd caused by neutron irradiation in NRU. Involves production of 147Nd from fission of 235U, and separation of Nd.

2. Irradiation of 146Nd in the NRU reactor for 2 years followed by mass spectrometric determination of the 148Nd to 146Nd ratio.

Accuracy: 8%

Completion dates: 1. 1983 November
2. 1986
Laboratory and address: Nuclear Research Centre
The University of Alberta
Edmonton, Alberta
Canada T6G 2N5

G.C. Neilson and J.T. Sample

Facilities: Subnano-second pulsed beam derived from 7 MV CN van
de Graaff accelerator and Mobley magnet. Monoenergetic neutron beam obtained from \(^3\)H(p,n)\(^3\)He and
\(^3\)H(d,n)\(^4\)He reactions using liquid nitrogen cooled tritium gas cell.

Experiment: Determination of fission-fragment mass distribution
and fission-fragment kinetic energy from fast neutron induced fission of \(^{238}\)U and \(^{232}\)Th. \(E_n = 2.0 - 5.2\) MeV in steps of about 0.5 MeV for \(^{238}\)U fission.
\(E_n = 1.6, 3.1\) and \(5.2\) MeV for \(^{232}\)Th fission. Comparison of fission-fragment mass distribution with
statistical model calculation. Fission barriers and shell energies deduced.

Method: Fission fragment detected by Ortec surface barrier
heavy-ion detector. Time-of-flight technique employed to measure fragment flight time. Fission-fragment mass distribution and correlation of
fragment kinetic energy versus fragment mass derived from data.

Accuracy: Fragment mass resolution about 5 u. Fragment energy
resolution about 2 MeV. A total of about 5000 fission
events collected for each neutron energy.

Completion date: The measurement programme has been completed.

Publication: "Fast Neutron Induced Fission of \(^{238}\)U"
2485 (1980).
also submitted to Phys. Rev. C
CANADA

Laboratory and address: University of Toronto
Erindale College
3359 Mississauga Road North
Mississauga, Ontario
Canada L5L 1C6

Names: B. Singh†, D. Viggars†, H. W. Taylor
(† - University of Kuwait)

Facilities: 14 MeV neutron generator producing \(\sim 2 \times 10^{10} \) n/s through the d,T reaction.

Experiment: Study of the decay of 91 m \(^{78}\)As.

Method: Gamma radiations studied with Ge spectrometers, \(\gamma-\gamma \) coincidence methods.

Accuracy: \(\gamma \)-ray energy measurements to \(\leq 0.6 \) keV energy levels in \(^{78}\)Ge to \(\leq 0.22 \) keV.

Completion date: January 1982.

Discrepancies to other reported data:

i) energy and intensity determinations have been improved

ii) new transitions with energies of 351.1, 497.0, 637.1, 756.9, 903.6, 988.2, 1018.7, 1169.5 and 2758.8 keV have been observed.

iii) coincidence measurements have produced some revisions of decay scheme.

Publications: B. Singh, D.A. Viggars and H.W. Taylor
Spectroscopy of gamma rays from \(^{78}\)As decay
Laboratory and address: Chilean Nuclear Energy Commission
La Reina Nuclear Research Reactor
Casilla 188-D, Santiago - Chile

Experiment: Precise measurement of the decay heat following irradiation of various uranium samples with slow neutrons.

Method: Absolute adiabatic calorimetry. The aim of this work is to check the existing data on uranium decay heat after various irradiation periods. The results will be used to determine the absolute burn-up of the fuel discharged from the research reactors.

Completion date: start of measurement delayed.
Czechoslovakia

Laboratory and Address: Institute of Nuclear Physics, Czechoslovak Academy of Sciences, 250 68 Rež
Czechoslovakia
x) Nuclear Centre, Faculty of Mathematics and Physics, Charles University, Prague, Povltavská 1, 180 00 Praha 8-Pelc-Tyrolka, Czechoslovakia

Names: R. Bayer, Z. Dlouhý, J. Švanda, x) I. Wilhelm

Facilities: 1. 6 MW - research reactor
2. Self-fission source of 252 Cf

Experiment: Light particles emission from heavy nuclei fission

Method: A semiconductor ΔE-ΔE detector telescope and ΔE-ΔE - E ionisation chamber are used for particle identification

Results: The yields and their energy spectra of light particles from the self-fission of 252 Cf have been measured. The yields of 6He, 8He, Li, 6Li, 7Li, 8Li, 9Li, Be relative to emission of 100 alpha particles and their most probable energies were determined.

Accuracy: The accuracy of yield determination was about 5 - 25%.

Completion date: Work is in progress

Publications: R. Bayer, Z. Dlouhý, J. Švanda, I. Wilhelm
Investigation of light particle yields from 252 Cf source.
All Union Conf. on Neutron Physics, Kiev 1980, Part 3, 20.

R. Bayer, Z. Dlouhý, J. Švanda
Laboratory and address: Département de Recherche Fondamentale
Laboratoire de Chimie Physique Nucléaire
Centre d'Études Nucléaires de Grenoble
85 x - 38041 GRENOBLE CEDEX - France.

Names: J. BLACHOT, J. CRANÇON, Ch. HAMELIN, G. LHOSPICE

Facilities: Melusine reactor (thermal neutron and caramel system for fast neutrons) 3 MeV neutrons generator and high flux reactor of I.L.L.

Experiment: The element yields of Bromine, Krypton, Rubidium, Tellurium, Iodine, Xenon, Caesium, have been measured for:

\[{}^{235}\text{U}(n_{th}, f), {}^{235}\text{U}(n_{f}, f), {}^{235}(n_{3\text{MeV}}, f), {}^{232}\text{Th}(3\text{MeV}, f) \]

\[{}^{238}\text{U}(n_{3\text{MeV}}, f), *{}^{232}\text{U}(n_{th}, f), *{}^{229}\text{Th}(n_{th}, f) \]

Values for the odd even effects in Z for all these systems has been deduced.

Method: Direct growth and decay activities are measured with a Ge/Li detector and recorder in a multispectrum mode by a 4K multichannel analyser.

Accuracy: The average relative uncertainty of our measurements is between 5 and 10%.

Completion date: \[{}^{235}\text{U}, {}^{238}\text{U}, {}^{232}\text{Th} \] during 1980 and 1981, \[{}^{229}\text{Th} \] and \[{}^{232}\text{U} \] in progress, \[{}^{238}\text{Pu} \] will be started end of 1983.

Nuclear Physics A361 (1981) 213

*Collaboration with CSTN, Alger
Laboratory and address:
- DRF/CPN, CEN.G - 85 X, 38041 GRENOBLE CEDEX.
- Institut LAUE LANGEVIN - B.P. n° 156 X GRENOBLE.
- Institut für Kernphysik, Technische Hochschule - DARMSTADT (RFA)
- K.F.A. KARLSRUHE (RFA).

Facilities: High Flux Reactor - Lohengrin spectrometer.

Experiment: Independent yields and energy distributions of the light fission fragments produced by thermal neutron induced fission of 239Pu.

Method: The fragments are separated according to their mass and their energy by the Lohengrin separator. Energy loss technique is used to separate the charge components of a given mass.

Completion date: Experiment completed. Data processing nearly achieved.

Publication: To be published in NUCLEAR PHYSICS.
Laboratory and address: Laboratoire de Chimie-Physique et Radiochimie
Faculté des Sciences, 28, avenue Valrose
06034 Nice Cédex, France

Names: J. Dalmasso, H. Maria, G. Barci-Funel and G. Ardisson

Experiment: Search for low energy γ-quanta in $^{125}\text{Sb} - ^{125}\text{Te}^m$ equilibrium source decay.

Method: Recent works have been performed concerning β decay of ^{129}Sb (ref 1-4) in view to determine missing low intensity γ-rays in ^{129}Te levels scheme. Walters and Meyer 3 reported a new 19.88 keV transition. In this study, we reinvestigated the low energy spectrum using a high resolution HPGe detector (145 eV at Fe Kα). Pulses were analysed with a 8192 channels ADC. Several runs were performed with one 6 years old $^{125}\text{Sb} - ^{125}\text{Te}^m$ source, before and after purification and precipitation as Sb$_2$S$_3$ 1.

Measurements: Energy and intensity of ^{125}Sb γ-rays and associated Te X-rays were calculated using standards I.A.E.A. sources of ^{137}Cs, ^{241}Am and ^{133}Ba. Careful examination of Te X-rays region was necessary, because a 20.020 keV photon was due to Kα escape of Kβ line. However we analysed a contribution of (0.023 ± 0.005)% for a 19.888 keV photon, in good agreement with result of Walters and Meyer 3. Table summarizes results of energy and intensity in $^{125}\text{Sb} - ^{125}\text{Te}^m$ equilibrium mixture.

Accuracy: The accuracy (1σ) for energy is within 6 to 20 eV. Absolute intensities of γ- and X-rays range between 4 to 8%.

Discrepancies to other reported data: No evidence for reported 110.9 and 146.08 keV γ-rays 3. Assuming the experimental value $\alpha_K = 151 \pm 11$ of 109.26 keV M4 transition 5 and 12.01 ± 0.36 for $\omega_K(35.5)$ (ref 6), a contribution of 7.55 eK for all other transition and $\omega_K = 0.859$ (ref 6), we found $I(K_\alpha + K_\beta) = 56.7 \pm 8.5$ % decays. This is in good agreement with our experimental value i.e. 53.2 ± 6.4 K X-rays % decays.

Publications: See ref. 1, 4 and to be published

References:
<table>
<thead>
<tr>
<th>Energy</th>
<th>present work</th>
<th>Walters and Meyer3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I (% decays)</td>
<td>Energy I (% decays)</td>
</tr>
<tr>
<td>19.888</td>
<td>0.023</td>
<td>19.88 15</td>
</tr>
<tr>
<td>27.213</td>
<td>0.072</td>
<td>109.276 15</td>
</tr>
<tr>
<td>27.484</td>
<td>14.5</td>
<td>109.89 15</td>
</tr>
<tr>
<td>30.985</td>
<td>6</td>
<td>116.952 11</td>
</tr>
<tr>
<td>31.706</td>
<td>1.75</td>
<td>146.08 10</td>
</tr>
<tr>
<td>35.505</td>
<td>4.46</td>
<td>172.615 15</td>
</tr>
<tr>
<td>61.83</td>
<td>0.001</td>
<td>176.334 11</td>
</tr>
<tr>
<td>109.263</td>
<td>0.225</td>
<td>176.334 11</td>
</tr>
<tr>
<td>116.907</td>
<td>0.181</td>
<td>176.334 11</td>
</tr>
<tr>
<td>172.702</td>
<td>6.74*</td>
<td>176.334 11</td>
</tr>
<tr>
<td>176.342</td>
<td></td>
<td>176.334 11</td>
</tr>
</tbody>
</table>

*Intensity value of ref. 4 normalised to 29.44 photons of 427.9 keV which corresponds to 100$^\beta$ decays3.

Table: Absolute intensities of X-and low energy γ-rays in $^{125}\text{Sb}^{125}\text{Te}_m$ equilibrium source decay.
Laboratories and Adresses:
Laboratoire de Chimie-Physique et Radiochimie (LCPR)
Université de Nice, 06034 Nice Cédex, France
Institut de Recherches sur les Energies Nouvelles (IREN)
Faculté des Sciences, BP 322, Abidjan, Côte d'Ivoire

Names:
J. Dalmasso, G. Barci, H. Maria, C. Ardisson, B. Weiss, H. Forest, G. Ardisson (LCPR)
A. Hachem (IREN)

Facilities:
Ge(Li) detectors, planar HPGe detectors, 4K analysers.

Experiments:
Measurements of Absolute K-X Transition Probabilities of Fission Products. These quantities are required for quantitative determination of FP activities in environmental samples by the X-Ray spectrometric method (1,2). Accurate determination of \(I_x \) and \(E_x \) in Fission Radionuclides. Decay Schemes.

Method:
Very thin sources of radiochemically separated FP nuclides are measured with calibrated coaxial Ge(Li) detectors and planar HPGe detectors (25 and 200 mm²). The following nuclides are investigated:

- \(^{77}\)As, \(^{95}\)Zr, \(^{108}\)Ag\(_m\)+, \(^{110}\)Ag\(_m\)+, \(^{106}\)Ru-\(^{106}\)Rh, \(^{125}\)Sb, \(^{131}\)I, \(^{132}\)I, \(^{137}\)Cs, \(^{140}\)Ba, \(^{140}\)La, \(^{144}\)Ce-\(^{144}\)Pr.

Accuracy:
\(\Delta E_x \) between 5 to 100 eV, \(\Delta I_x \) between 5 to 15%. \(\Delta I_{KX} \) between 5 to 15% (including error in branching ratios).

Completion date: Expected mid 84

Discrepancies:
The new \(I_x \) and \(E_x \) values found for \(^{77}\)As decay are given with better precision than ref(a). For \(^{140}\)La, our \(I_x(487) = (45.10 \pm 0.9)\% \) (ref :3) disagree with earlier value of ref (b) i.e. \(I_x(487) = (38.1 \pm 0.5)\% \).

Publications:

References:
a) G. Ardisson, C. Marsol,'Sur la mise en évidence de faibles branches \(\beta \) dans la désintégration de \(^{117}\)As', Can. J. Phys., 49 (1971) 1731.
FRANCE

Laboratories and Addresses:
- Laboratoire de Chimie Physique et Radiochimie, (LCPR) Université de Nice, 06034 Nice Cedex, France.
- Institut de Recherches sur les Energies Nouvelles (IREN) Faculté des Sciences 04 BP 322, Abidjan, Côte d'Ivoire.

Names:
J. Dalmasso, H. Maria, G. Barci, C. Ardisson-Marsol and G. Ardisson (LCPR)
A. Hachem (IREN)

Facilities:
HPGe Planar detector, Ge-Li coaxial detectors
4 K multichannel analysers.

Experiment 1:
Reinvestigation of 77As decay.

Method:
77As nuclide was radiochemically separated from 77Ge. The low energy spectrum of 77As was measured with high resolution HPGe planar detector. Precise energies and intensities of 14 γ-lines were obtained by simultaneous calibration with 152Eu and 154Ta sources.

Two unreported photons at 51.34 and 125.84 keV were interpreted as desexciting a $J^\pi = 9/2^+$ level at 175.33 keV in 77Se. 77Se K_α and K_β X-ray intensities were also measured.

Accuracy:
Within 5 to 15 eV for strong γ rays.

Table:

<table>
<thead>
<tr>
<th>E_γ (keV)</th>
<th>I_γ(rel)</th>
<th>E_γ (keV)</th>
<th>I_γ(rel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_α</td>
<td>11.22 (1)</td>
<td>161.932 (10)</td>
<td>9.22 (43)</td>
</tr>
<tr>
<td></td>
<td>12.50 (2)</td>
<td>200.47 (2)</td>
<td>0.067(7)</td>
</tr>
<tr>
<td></td>
<td>13.4 (1)</td>
<td>239.001 (6)</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>51.34 (2)</td>
<td>249.005 (8)</td>
<td>24.8 (10)</td>
</tr>
<tr>
<td></td>
<td>62.2 (4)</td>
<td>270.850 (12)</td>
<td>0.52 (3)</td>
</tr>
<tr>
<td></td>
<td>81.15 (2)</td>
<td>281.642 (8)</td>
<td>3.64 (18)</td>
</tr>
<tr>
<td></td>
<td>87.854 (5)</td>
<td>439.493 (20)</td>
<td>0.064(7)</td>
</tr>
<tr>
<td></td>
<td>125.84 (2)</td>
<td>520.654 (15)</td>
<td>35.1 (14)</td>
</tr>
<tr>
<td></td>
<td>139.243 (15)</td>
<td>618 (43)</td>
<td></td>
</tr>
</tbody>
</table>

Discrepancy:
Good agreement with previous work of Ardisson and Marsol1. γ-rays at 167 and 177 keV reported by Cheng et al. were absent from our spectra. They could belong to 77Ge as it has been reported elsewhere3.

Publication:
J. Dalmasso, H. Maria, G. Barci, G. Ardisson,

References:
(3) B. Singh and D.A. Viggars, Nucl. Data Sheets, 29 (1980) 75.
Precise measurements of the ^{144}Ce γ lines

Radiochemically separated ^{144}Ce was measured with HPGe detector. The system resolution was better than 180 eV at FeK$_{\alpha}$ line. Precise energy of main photon lines were obtained by simultaneous counting runs with ^{57}Co, ^{152}Eu and ^{182}Ta. A dispersion of 0.048 keV/channel was used in these experiments.

Within 5 to 50 eV for E_γ and 4 to 8 % for relative I_γ

<table>
<thead>
<tr>
<th>E_γ(keV)</th>
<th>I_γ</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.012 (50)</td>
<td>5.44</td>
<td>$L_{\alpha 1} + L_{\alpha 2}$</td>
</tr>
<tr>
<td>5.486 (50)</td>
<td>5.28</td>
<td>$L_{\beta 1} + L_{\beta 3} + L_{\beta 4}$</td>
</tr>
<tr>
<td>5.851 (50)</td>
<td>1.6</td>
<td>$L_{\beta 2,15}$</td>
</tr>
<tr>
<td>6.297 (50)</td>
<td>0.8</td>
<td>$L_{\gamma 1}$</td>
</tr>
<tr>
<td>6.594 (50)</td>
<td>0.58</td>
<td>$L_{\gamma 2} + L_{\gamma 3}$</td>
</tr>
<tr>
<td>33.568 (10)</td>
<td>1.77</td>
<td>K_{α}</td>
</tr>
<tr>
<td>35.547 (20)</td>
<td>20.0</td>
<td>$K_{\alpha 2}$</td>
</tr>
<tr>
<td>36.026</td>
<td>37.0</td>
<td>$K_{\alpha 1}$</td>
</tr>
<tr>
<td>40.739 (20)</td>
<td>12.8</td>
<td>$K_{\beta 1}$</td>
</tr>
<tr>
<td>40.98 (20)</td>
<td>1.38</td>
<td>$K_{\beta 2}$</td>
</tr>
<tr>
<td>41.778 (10)</td>
<td>2.93</td>
<td>$K_{\beta 2}$</td>
</tr>
<tr>
<td>53.402 (5)</td>
<td>0.90</td>
<td>$K_{\beta 2}$</td>
</tr>
<tr>
<td>80.120 (5)</td>
<td>12.25</td>
<td>$K_{\beta 2}$</td>
</tr>
<tr>
<td>99.961 (20)</td>
<td>0.36</td>
<td>$K_{\beta 2}$</td>
</tr>
<tr>
<td>133.515 (5)</td>
<td>100</td>
<td>$K_{\beta 2}$</td>
</tr>
</tbody>
</table>

The 59 keV isomeric transition reported by other authors is not found in this experiment.

J. Dalmasso et al, to be published

Laboratory and address: Laboratoire de Biophysique, U.E.R.D.M., Université de Nice, 28, avenue Valrose - 06034 NICE CEDEX, F.

Name: G. MALLET

Facilities: This work was performed in the "Laboratoire de Chimie Physique Atomique et Structurale" of the Nice University, Parc Valrose.

Experiment: Application of $^{110}\text{Ag}^{m+g}$ to the determination of the absolute efficiency of Ge(Li) detectors.

Method: In γ spectra we can observe distributions due to the addition in the detector of pulses coming from γ emitted in coincidence by the sample studied. During our study of the $^{110}\text{Ag}^{m+g}$ decay we have demonstrated that it is possible to take advantage of this parasitic summing effect to determine the full energy peak efficiency (F.E.P.E.) of two identical Ge(Li) detectors. This method can be also used to measure the F.E.P.E. of only one detector used in the single mode with the source near the detector.

Accuracy: Better than 3%.

Completion date: Completed.

Publications:

G. MALLET and M.S. PRAVIKOFF - "Analyse du Fonctionnement du Spectromètre à CoIncidence et Addition ; Application à l'Etude de ^{207}Bi et ^{110}mAg" Nucl. Inst. Meth. 184, 469-476 (1981).

Laboratory and address:

Institut für Reine und Angewandte Kernphysik der Universität Kiel (IKK),
D-2054 Geesthacht, Reaktorstation

Names: P. Fischer, U. Harz, H.G. Priesmeyer

Facility:
Fast Chopper Neutron Time-of-Flight spectrometer, 42 m flightpath in front of
beam hole of 5MW FRG-1 reactor. 15 ns/m nominal resolution, special equipment
for transmission investigations of highly radioactive samples, 11 Li-6 glass
detectors, max. rotorspeed 12000 rpm, min. burst width 0.64 μsec, min. time
channel width 100 nsec, 2560 time-of-flight channels.

Experiments:
Neutron resonance investigations by transmission measurements between 1 eV
and 1.5 keV on separated stable or radioactive isotopes of special interest to
reactor physics (especially fission products), gross fission products.
Possibility of extending energy range to thermal region using crystal spectro-
meter or neutron guide tubes.

Completed: Final measurements on one of the five gross-fission product samples
show time variations useful for isotopic identifications.

Ongoing: Gross-fission product mixtures, comparative measurements;
measurements using 24 keV Pd-filter neutrons.

Planned: Transmission experiments on I 129, Krypton isotopes and gross-fission
products.

Method:
Sample in beam, sample out-of-beam transmission measurement,
black resonance background determination technique.

Accuracy:
For resonance parameters: about 5% or better, depending on statistical
accuracy of transmission points.

Recent publications:
Neutron Resonance Parameters of 99Tc in the Energy Range 4.5 to 25 eV.
P. Fischer, U. Harz, H.G. Priesmeyer GKSS 81/E/17
Die Energieeichung des IKK Fast-Choppers mit U 238 Standards - Die Resonanz-
parameter des Iridiums im Energiebereich bis 1.5 eV.
H.G. Priesmeyer, U. Harz, P. Fischer
Neutron Physics Activities at the FRG-1 RESEARCH REACTOR
GERMANY, FED. REP.

Laboratory: Kernforschungsanlage Jülich, Institut für Kernphysik, Postfach 1913, D-5170 Jülich 1

1. Names: K. Shizuma (1980-82 on leave from Hiroshima University, Japan), H. Lawin, K. Sistemich

Facility: Fission product separator JOSEF at reactor DIDO, Jülich

Experiment: Study of the β decay of 106Nb and of the level scheme of 106Mo

Method: Separation of the fission products according to their mass and nuclear charge. Measurement of γ singles and $\gamma-\gamma$ coincidence spectra

Accuracy: Varying

Completion: Completed

Facility: Fission product separator JOSEF at reactor DIDO, Jülich

Experiment: Study of the β decay of 102Y and the level scheme of 102Zr

Method: Separation of the fission products according to their mass and nuclear charge. Measurement of γ singles and $\gamma-\gamma$ coincidence spectra
GERMANY, FED. REP.
(cont'd)

Accuracy: Varying

Completion: Completed

Publication: To be published in Physical Review C

3. Laboratories: Universität Mainz, Institut für Kernchemie, Postfach 3980
D-6500 Mainz
Gesellschaft für Schwerionenforschung, Postfach 110541,
D-6100 Darmstadt
Kernforschungsanlage Jülich, Institut für Kernphysik,
Postfach 1913, D-5170 Jülich

Names: K. Shizuma (KFA, 1980-82 on leave of absence from Hiroshima University, Japan), H. Ahrens (GSI), J.P. Bocquet (Université de Grenoble, France), N. Kaffrell (Uni Mainz), B.D. Kern (KFA, 1978 on leave of absence University of Kentucky, USA), H. Lawin (KFA), R.A. Meyer (KFA, 1982/83 on leave of absence from University of California, USA), K. Sistemich (KFA), G. Tittel (Uni Mainz), N. Trautmann (Uni Mainz)

Facilities: Fission product separators LOHENGRIN (High flux reactor, ILL Grenoble, France) and JOSEF (Reactor DIDO, Jülich)

Experiments: Study of the \(\beta \) decays of \(^{103,105}\text{Nb} \) and the level schemes of \(^{103,105}\text{Mo} \)

Method: Separation of the fission products according to their mass and nuclear charge. Measurement of \(\gamma \) singles and \(\gamma-\gamma \) coincidence spectra

Accuracy: Varying

Completion: Completed

Publication: In preparation
GERMANY, FED. REP.

LABORATORY: Kernforschungszentrum Karlsruhe
Institut für Angewandte Kernphysik

1. NAMES: H. Beer, F. Käppeler

FACILITIES: 1) pulsed 3 MV Van de Graaff, kinematically collimated neutron beam, 25 keV above the $^7\text{Li}(p,n)$ reaction threshold
2) Ge(Li) detector (rel. efficiency for ^{60}Co: 7 %, energy resolution at 1.33 MeV: 2 keV)

EXPERIMENT: 30 keV capture cross section of ^{124}Xe, ^{132}Xe, ^{134}Xe, $^{152,154}\text{Sm}$, $^{152,158}\text{Gd}$ and capture cross section of ^{151}Eu to the 9.3 h isomeric state in ^{152}Eu at 48.5 keV

METHOD: activation technique

ACCURACY: 5-10 %

COMPLETION DATE: Summer 1983

PUBLICATIONS: H. Beer, F. Fabbri, F. Käppeler, R.-D. Penzhorn, G. Reffo, R.A. Ward

2. NAMES: G. Walter, F. Kaeppeler

FACILITIES: pulsed 3 MV Van de Graaff

EXPERIMENT: Capture Cross Section Measurements on ^{80}Kr and ^{86}Kr Between 4 and 300 keV Neutron Energy
METHOD: continuous neutron energy spectrum from $^7\text{Li}(p,n)$ reaction;
high pressure gas samples (300 bar in stainless steel spheres of 20 mm diameter and 0.5 mm wall thickness);
capture events detected by 2 C$_6$D$_6$-detectors of 1 l volume with pulse height weighting;
neutron energy determination by time-of-flight with a resolution of 1.5 ns/m;
197Au-sample used as a standard.

ACCURACY: Statistical uncertainty typically 5–10% for energy intervals corresponding to the experimental resolution.
Systematic uncertainties between 4 and 10% dependent on the isotopic composition of the samples.

COMPLETION DATE: summer 1983

DISCREPANCIES TO OTHER REPORTED DATA: No such data available

PUBLICATIONS: Preliminary data are summarized in internal reports.

Facility: 3.75 MV Van de Graaff

Experiment: Neutron capture cross sections measured: \(\sigma_{n\gamma} \) for \(^{148,149,150}\text{Sm} \) for \(4 < E_n < 250 \text{ keV} \)

Calculated: \(\sigma_{n\gamma} \) for the unstable isotopes \(^{147}\text{Nd}, ^{147,148}\text{Pm}, ^{151}\text{Sm} \)

Method: continuous neutron energy spectrum from \(^7\text{Li}(p,n) \) reaction;
capture events detected by 2 \(^6\text{Li}\) detectors of 1 l volume with off-line pulse height weighting;
neutron energy determination by time-of-flight with a resolution of 1.5 ns/m;
\(^{197}\text{Au} \) sample as a standard

Accuracy: statistical uncertainty typically 3 % for energy intervals corresponding to the experimental resolution.
Systematic uncertainties 4.5 %

Completion date: Autumn 1983

Discrepancies to other reported data: no discrepancies for \(^{148}\text{Sm} \), but severe discrepancies for \(^{149}\text{Sm} \) (compared to Mizumoto et al., Proc.Int.Conf. on Nuclear Cross Sections for Technology, Knoxville, Tennessee, p. 328 (1979) and for \(^{150}\text{Sm} \) (compared to Kononov et al., Sov.J.Nucl.Phys., 27 (1978) 5)

Facility: 3.75 MV Van de Graaff

Experiment: Measurement of the neutron capture cross sections of 142,143,144Nd for $6 < E_n < 250$ keV

Method: Continuous neutron energy spectrum from $^7\text{Li}(p,n)$ reaction; capture events detected by 2 C$_2$D$_6$-detectors of 1 1 volume with off-line pulse height weighting; neutron energy determination by time-of-flight with a resolution of 1.5 ns/m; 197Au sample as a standard

Accuracy: Statistical uncertainty typically 5 % for energy intervals corresponding to the experimental resolution, systematic uncertainties 6 %.

Completion date: Summer 1983

Discrepancies to other reported data: No discrepancies for 142,143Nd but severe discrepancy for 144Nd (compared to Musgrove et al., Proc. Int. Conf. on Neutron Physics and Nuclear Data, Harwell, p. 438 (1979))

5. Names: G. Walter, H. Beer

Facility: 3.75 MV Van de Graaff

Experiment: Measurement of the Maxwellian average neutron capture cross sections of 79,81Br and 85,87Rb at $kT = 25$ keV

Method: Activation technique

Accuracy: 5 - 18 %

Completion date: Summer 1983
GERMANY, FED. REP.

Laboratory and address: Kernspektroskopie, Institut für Metallphysik, Technische Universität, Mendelssohnstr. 3
D-3300 Braunschweig, Germany

Names: U. Keyser, F. Münich, B. Pahlmann

Facilities: On-line mass separator LOHENGRIN and OSTIS, installed at the high-flux reactor of the ILL, Grenoble, France.

Experiments: 1.) Determination of beta-decay energies of very neutron-rich isotopes available from fission of ^{235}U and ^{239}Pu.
2.) Sum-beta-spectra of ^{235}U and ^{239}Pu from thermal neutron fission to deduce the antineutrinospectrum of a reactor core.

Method: $\beta\gamma$-coincidence measurements with a plastic-scintillator telescope, β-singles measurements with a high-purity Ge detector.

Accuracy: ΔE between 70 keV and 150 keV, depending upon the complexity of the decay scheme.

Completion date: 1.) Systematic investigation
2.) end of 1983

Publications: Yellow report CERN 81-09, p. 116
94-98 ^{87}Rb, 142-146 ^{133}Cs
<table>
<thead>
<tr>
<th>Laboratory and address</th>
<th>Institut für Radiochemie Technische Universität München 8046 Garching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Names</td>
<td>D.C. Aumann, I. Winkelmann</td>
</tr>
<tr>
<td>Facility</td>
<td>14.8-MeV neutron generator</td>
</tr>
<tr>
<td>Experiment</td>
<td>Determination of fission yields for fission of Pu-242 induced by 14.8-MeV neutrons</td>
</tr>
<tr>
<td>Method</td>
<td>Yields determined (1) by ({ }^3) -counting of irradiated Pu-242 sample and (2) radiochemically with either ({ }^3) - or ({ }^8)-counting. Yields of 65 fission products, representing 43 mass chains, have been determined</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Yields determined by ({ }^3)-counting: 5-10% ({ }^8)-counting: 10-20%</td>
</tr>
<tr>
<td>Completion date</td>
<td>completed</td>
</tr>
</tbody>
</table>

Laboratory and address: II. Physikalisches Institut
Universität Giessen
Heinrich-Buff-Ring 16
D-6300 Giessen, Germany

1. Names: C. Geisse, H. Wollnik (II.Physik Giessen)
F. Blönnigen (II.Physik Giessen/ILL Grenoble)
B. Pfeiffer (ILL Grenoble)

Facilities: On-line mass separator O3TIS installed at the
high-flux reactor of ILL, Grenoble

Experiment: Q_β-values of neutron-rich fission products

Method: Alkaline fission products of 235U are ionized on
the 2000 K hot Rhenium surface of the ion source
and separated according to mass. The beta-decay
products are selected in energy by a magnetic
sector device which is used for pile-up and back-
ground reduction. The energy determination is made
in an 1000mm2x15mm Intrinsic Germanium detector.
Taking into account the previously measured
response function of the detector, the beta-
spectra of $^{88-98}$Rb and $^{138-146}$Cs are analysed with
an interactive graphics computer program.

Accuracy: 10-20 keV

Completion date: work is in progress

Publications: H. Wollnik et al.: Atomic Masses and Fundamental
Constants 6 (1980)
F. Blönnigen et al.: Nucl. Instr. and Meth.
178 (1980) 357-361
192 (1982) 261-272
Annex to the Annual Report ILL 1979-1982
GERMANY, FED. REP.
(cont'd, same as INDC(NDS)-130)

Experiment: Half-lives and level schemes of neutron-rich fission products

Method: Alkaline and alkaline earth as well as several rare earth fission products of 235U from the thermal ion source (2000 K) and a high temperature ion source (2700 K) are studied in different experiments:
Gamma-multispectra and multiscaling methods for the half-live determination of extremely neutron-rich fission fragments;
single gamma-ray and conversion electron spectra, prompt and delayed gamma-gamma and beta-gamma coincidences and gamma-gamma angular correlation measurements with different Ge(Li)- and Si(Li)-detectors allowed to establish or extend level schemes of numerous isotopes.

Completion date: work is in progress

Publications:
B. Pfeiffer et al.: Proc. 4th Int. Conf. on Nuclei far from Stability (1981) CERN 81-09, p. 423

* 95,97,98Rb, 95,97,99Sr, 100,101Y, 147,149Ba, 147,148La, 152Pr, 154Nd.
GERMANY, FED. REP.

1. Laboratory
Institut für Kernchemie
Universität Mainz
D-6500 Mainz, Germany

Names: H.O. Denschlag, H. Braun, W. Ditz,
B. Sohnius (Univ. Mainz),
and H. Faust (ILL, Grenoble)

Facilities: LOHENGRIN Mass separator for unslowed fission
products at ILL, Grenoble

Experiment: The charge distribution and isomeric yield ratios
among heavy-mass peak fission products (A=130-147)
from 235U(n_{th},f) are being measured at various
well defined kinetic energies (excitation energies)
of the fission fragments

Method: Fission fragments separated according to mass
(resolution $\Delta M / M = 400$) and kinetic energy (reso-
lution 2 MeV) are intercepted on a moving
transport tape, transported continuously or
discontinuously in front of a Ge(Li) γ-ray
detector, and counted via the γ-rays emitted in
their β-decay

Accuracy: Varying

Completion: nearly completed; experiment interrupted at present
due to temporary reactor shut off

Publications: H.O. Denschlag, H. Braun, W. Faubel, G. Fischbach,
H. Meixler, G. Paffrath, W. Pörsch, M. Weis, H. Schrader,
G. Siegert, J. Blachot, Z.B. Alfassi, H.N. Erten,
T. Izak-Biran, T. Tamai, A.C. Wahl, K. Wolfsberg,
in Physics and Chemistry of Fission (Proc.Symp. Jülich,
progress reports in Jahresbericht, Institut für
Kernchemie, Universität Mainz, and Annex to the Annual
2. Names: H. Braun, H.O. Denschlag

Facilities: TRIGA Mark II Reactor

Experiment: Yields and decay properties of the fission product (same as INDC(NDS)-130) chain with mass number A = 133 are being redetermined

Method: Radiochemical and by mass-spectrometry

Completion date: completed

Publications: Jahresbericht 1977 and 1980
Institut für Kernchemie
Universität Mainz

3. Names: B. Sohnius, H.O. Denschlag

Facilities: TRIGA Reactor (Mainz), HELIOS Mass-separator (Mainz), OSTIS Mass-separator (Grenoble)

Experiment: Gamma-ray line intensities of short-lived nuclides in chains 142, 143, 144, 146, and 147 are being redetermined relative to long-lived descendents

Method: Fast radiochemical and mass separations

Accuracy: Generally ±10%

Completion date: Completed

INDC (Ger.)-24/L (1982) p. 46, and
B. Sohnius, B. Pfeiffer, H.O. Denschlag ibid (1983) in press
Laboratory: Institut für Kernchemie
Universität Mainz
Postfach 3980
D-6500 Mainz, Germany

1. Names: B. Steinmueller, H. Gabelmann, K.-L. Kratz

Facilities: TRIGA Mark II Reactor

Experiment: Time-dependent neutron spectra from \(^{235}\text{U}(\text{n}_{\text{th}},\text{f}) \)
corresponding to Keepin's 6 half-life groups

Method: Spectroscopy using \(^3\text{He}\)-ionization chambers and
100 µg \(^{235}\text{U} \) samples

Accuracy: Spectrum range from about 10 keV to 3 MeV with
2 keV channel width; energy resolution about \(\sim 35 \) keV.
Corrections for thermal neutrons, detector response
and γ-ray pile-up.

Cooperation: J.G. Owen, D.R. Weaver (Univ. of Birmingham, U.K.)

Completion date: End of 1983 for \(^{235}\text{U}(\text{n}_{\text{th}},\text{f}) \). Further
measurements with other fissioning nuclides
are in progress.
GERMANY, FED. REP.

(cont'd)

2. Names: H. Ohm, A. Schroeder, W. Ziegert and K.-L. Kratz

Experiment: From high-resolution delayed neutron energy spectra of 85As, $^{87-92}$Br, $^{92-98}$Rb, 135Sb, 136Te, $^{137-141}$I, $^{141-147}$Cs measured with 3He-ionization chambers (SEFORAD-Applied Radiation Ltd.); deduced:
- (I) average neutron energies (\bar{E}_n)
- (II) time-dependent neutron spectra for 235U(n$_{th,f}$) by summation method

Accuracy: $\Delta \bar{E}_n \approx 20$keV for 'soft' spectra
$\Delta \bar{E}_n \leq 75$keV for 'hard' spectra

Cooperation: T.R. England (LASL), F.M. Mann, R.E. Schenter (Hanford Engn. Development Lab.)

Publications: Proc. of the Consultants' Meeting on Delayed Neutron Properties, Vienna, March 1979, INDC (NDS)-107
GERMANY, FED. REP.

(cont'd)

Facilities: Alkali isotope separator OSTIS (ILL Grenoble)

Experiment: Measurement of half-lives and Pn-values of alkaline and earth-alkaline fission products

Method: Neutron-multiscaling, beta-multiscaling

Completion date: 1984. Results of Pn-values for $^{97-99}$Sr, $^{97-99}$Y, 147,148Ba, 147,148La have already been published (see below).

Discrepancies to other data: Pn values obtained in this work are generally one or more orders of magnitude smaller than those given by G. Engler and E. Ne'eman, Nucl. Phys. A367 (1981)29.

Note: The experiment described in last years contribution on page 45 of INDC(NDS)-130 is completed, but 2 additional publications should be mentioned:

C.E.C. GERMANY, FED. REP.

Commission of the European Communities
Joint Research Centre
Karlsruhe Establishment
European Institute for Transuranium Elements
Postfach 2266
7500 Karlsruhe
Federal Republic of Germany

Names: A. Cricchio, R. Ernstberger, L. Koch, R. Wellum

MEASUREMENT

Experiment: The TACO experiment comprised the irradiation of well-characterized quantities of fissile and fission-product nuclides in the Rapsodie reactor. Each nuclide was prepared as an individual solution in nitric acid from which an aliquot was taken, dried on aluminium foil and sealed into stainless-steel containers under vacuum for irradiation. The irradiation took place during 1971 and 1972 with the samples being exposed to a total fast neutron flux of 6×10^{22} n/cm². After cooling the capsules were dissolved and the contents analysed by massspectrometry. For those cases where neutron absorption was followed by β, γ decay and for the determination of fission yields, isotope dilution massspectrometry was employed. The following actinides were irradiated: ^{233}U, ^{235}U, ^{236}U, ^{237}Np, ^{238}U, $^{239-242}\text{Pu}$, ^{241}Am and ^{243}Am. After subsequent analysis their integral neutron absorption, capture and fission cross-sections were calculated. The method of calculation depended in all cases on specifying the concentration of each nuclide relative to the total nuclide content of the capsule. In this way potential losses of material were compensated for.
The fission-product nuclides irradiated included 95Mo, 97Mo, 98Mo, $^{100-102}$Ru, 104Ru, 106Pd, 108Pd, 110Pd, 125Te, 126Te, 128Te, 133Cs, 141Pr, 143Nd, 144Nd, 146Nd, 148Nd, 147Sm, 149Sm and 139La.

Integral neutron absorption cross-sections have been calculated for the majority of these isotopes.

Publication: International Conference on Nuclear Data, 6-10 Sept. 1982, Antwerp, Belgium; proceedings p. 175.
INDIA

Laboratory and Address: Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay-400 085, India.

Facilities: CIRUS Reactor, BARC

Measurements: Measurements of Fragment Mass, Charge and Kinetic Energy Distributions in Thermal Neutron Fission of 235U.

Method: A simultaneous measurement of mass (M), charge (Z) and kinetic energy (E_k) distributions in 235U (n_{th}, f) has been carried out using a back-to-back ΔE-E detector system. A pair of gridded ionization chambers filled with P-5 gas measured the energy losses ΔE_1, ΔE_2 of the complementary fragments in the gas and the residual fragment energies were measured with a pair of semiconductor detectors. The four parameter data were analysed to obtain fragment charge distributions using the mass momentum relations to obtain M and then using the dependence of ΔE on E/M and Z. The charge resolution was determined at the gas pressures of 40-, 150- and 270- torr and an optimum resolution of FWHM = 2.1 \pm 0.1 charge units was obtained at 270 torr. The variances σ_M^2, σ_Z^2 of the fragment mass and charge distributions obtained as a function of E_k at 5 MeV intervals. The results of σ_M^2, σ_Z^2 versus E_k suggest a strong dependence of neutron-proton correlations on the E_k in the nucleon exchange processes which result in the fragment mass and
RESULTS: i) \bar{M}_L, \bar{M}_H, σ^2_M versus E_k

Accuracy: Fragment mass distributions measured with an experimental resolution of FWHM \sim 4 amu. Fragment charge distribution with a resolution of FWHM $= 2.1 \pm 0.1$.

Completion Date: April 1983

Discrepancies to other reported data: σ^2_M, σ^2_Z versus E_k data reported for the first time. No similar data known to the authors.

<table>
<thead>
<tr>
<th>Laboratory and address</th>
<th>Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay-400 085</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Beta proportional counter, Low background proportional counter.</td>
</tr>
<tr>
<td></td>
<td>3. Class A Radiochemical Laboratory</td>
</tr>
<tr>
<td>Experiment</td>
<td>Mass yield from thermal neutron fission of 229Th.</td>
</tr>
<tr>
<td>Method</td>
<td>Fission yields in thermal neutron induced fission of 229Th were determined using comparison method with respect to thermal neutron fission of 235U and using 91Sr as internal standard.</td>
</tr>
<tr>
<td>Accuracy</td>
<td>5 - 10% in the high yield region.</td>
</tr>
<tr>
<td></td>
<td>10 - 15% in the low yield region.</td>
</tr>
<tr>
<td>Completion date</td>
<td>Completed.</td>
</tr>
<tr>
<td>Discrepancies to other reported data</td>
<td>There are several reported data on mass yields of 229Th in thermal neutron induced fission. Symmetric peak has been reported by some authors while others obtained only two asymmetric peaked mass yield distribution. In the present work, existence of small symmetric peak in addition to two prominent asymmetric peak has been established.</td>
</tr>
</tbody>
</table>

 Facilities: 60 c.c Ge(Li), 4 K Analyser.

 Experiment: Absolute Yields of 99Mo and 140Ba in the spontaneous fission of 244Cm.

 Method: Track etch-cum-radiochemistry, beta counting and gamma ray spectrometry.

 Accuracy: 5-8%

 Date: Completed.

3. **Names**

 Facilities

 4K analyser and Ge detectors.

 Experiment

 Investigation on fragment angular momentum in 252Cf (SF) system.

 Method

 Radiochemical separation followed by γ - ray spectrometry.

 Completion date

 Work in progress.

 Publication

 A part of work was presented at Solid State Nucl. Phys. Symp. at Varanasi, December 1982.
INDIA (cont'd)

| Laboratory and Address | Radiochemistry Division
| | Bhabha Atomic Research Centre
| | Trombay
| | Bombay 400 085, India. |
| Names | T. Datta, S.M. Sahakundu,
| | S.P. Dange, N. Chakravarty,
| | R. Guin and Satya Prakash |
| Facilities | VEC, 4K analyser, 60 CC Ge(Li) |
| Experiment | Dependence of fragment angular
| | moments on entrance channel
| | in $^{236}_{\text{U}}$ Fission |
| Method | Radiochemical separation
	followed by γ - ray spectrometry
Accuracy	-
Completion date	Completed.
Publication	Phys. Rev. Vol.27, No. 5
	May 1983.
Laboratory and Address : Radiochemistry Division
Bhabha Atomic Research Centre
Trombay
Bombay- 400 085, India.

Names : Alok Srivastav, A.G.C, Nair,
B.K. Srivastava, S.B. Manchar,
Satya Prakash and M.V. Ramamiah.

Facilities : 45 CC. Ge Detector
4K Channel Analyser

Experiment : Cumulative yields of short lived Rhenium isotopes in the spontaneous fission of 252Cf.

Method : Fast radiochemical separation followed by - ray spectrometry

Accuracy : ± 5 - 6 %

Completion date : December, 1982.

Laboratory and Address: Radiochemistry Division
Bhabha Atomic Research Centre
Bombay 400 085, India

Names: Alok Srivastava, A.G.C. Nair,
B.K. Srivastav, S.B. Manohar,
Satya Prakash and M.V. Ramaniah

Facilities: 45 CC. Intrinsic Ge detector
4K channel Analyser

Experiment: Isotopic yield distribution
of Tc isotopes in the spontaneous fission of ^{252}Cf.

Method: Fast radiochemical separation
followed by γ-ray spectrometry

Accuracy: $\pm 10\%$

Completion date: December, 1982.

Solid State Physics Symp.
December, 1982.
Varanasi.
INDIA

Laboratory : Indian Institute of Technology, KANPUR 208016, INDIA.

D.M. Nadkarni, B.A.R.C., Trombay, Bombay.

Facilities : 2 MeV Van de Graaff Accelerator.

Experiment : Angular Distribution of Polar Light Charged Particles in Thermal Neutron Induced Fission of ^{235}U.

Method : A semiconductor $\Delta E-E$ detector telescope is used for particle identification and an ionization chamber for fission fragment detection. The ionization chamber separates polar and equatorial light charged particles with the help of a collimator arrangement. Using different collimation for polar LCP region, yields of polar ^1H and ^4He particles were measured in thermal neutron induced fission of ^{235}U. Using Monte Carlo technique, $\sigma(\theta)$ of the angular distribution for polar proton and α's were determined. Angular distribution of polar protons was found to be very narrow in contrast with a wide distribution of polar α-particles.

Accuracy : Refer to the table.

Completion Date: Sept. 1981

Table : Yields of polar ^1H and ^4He per fission for two different collimator sizes viz 1 mm and 2 mm collimators.

<table>
<thead>
<tr>
<th>LCP</th>
<th>1 mm Collimator</th>
<th>2 mm Collimator</th>
</tr>
</thead>
<tbody>
<tr>
<td>^1H</td>
<td>$(2.0 \pm 0.6) \times 10^{-8}$</td>
<td>$(1.9 \pm 0.8) \times 10^{-8}$</td>
</tr>
<tr>
<td>^4He</td>
<td>$(1.1 \pm 0.4) \times 10^{-8}$</td>
<td>$(9.3 \pm 1.8) \times 10^{-8}$</td>
</tr>
</tbody>
</table>

Publications:

Laboratory: Indian Institute of Technology, KANPUR-208016, INDIA

Facilities: 2 MeV Van de Graaff Accelerator

Experiment: Angular distribution of light charged particles with respect to neutron direction in fast neutron induced fission of ^{235}U.

Method: Particle identification was performed by using a semiconductor $\Delta E-E$ detector telescope. The angular information of the particles with respect to the detector axis was also obtained by telescope using the technique developed in our laboratory. Experiments have been carried out at several neutron energies between thermal and 1 MeV and the anisotropies in the angular distributions of alpha particles are determined.

Accuracy: Refer to the table

Completion Date: April 1983

Table: Anisotropies $(Y(0^\circ)/Y(90^\circ))$ of the ternary alpha particle angular distribution

<table>
<thead>
<tr>
<th>Neutron Energy</th>
<th>Anisotropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(140 ± 30) KeV</td>
<td>(-85 ± 28)%</td>
</tr>
<tr>
<td>(170 ± 25) KeV</td>
<td>(-87 ± 32)%</td>
</tr>
<tr>
<td>(200 ± 25) KeV</td>
<td>(-94 ± 31)%</td>
</tr>
<tr>
<td>(400 ± 200) KeV</td>
<td>(-10 ± 28)%</td>
</tr>
<tr>
<td>(600 ± 180) KeV</td>
<td>(-25 ± 19)%</td>
</tr>
<tr>
<td>(1000 ± 170) KeV</td>
<td>(-50 ± 27) %</td>
</tr>
</tbody>
</table>

Publications:
1. Unpublished
Laboratory: Department of Physics, Faculty of Science, Punjab University, Patiala-147002, India.

Names: K. Singh and H.B. Sahota.

Facility: Intrinsic Ge, Si(Li) and Ge(Li) spectrometers.

Experiment: Precision measurement of gamma-ray intensities and directional correlation measurements in the decay of 99Mo.

Method: The intrinsic Ge and low energy Si(Li) detectors were calibrated with standard sources down to 5 keV energy region. The relative gamma ray intensities were precisely measured. For high energy region large size 64.1 cc Ge(Li) detector was used. From gamma-gamma directional correlation measurements on $740-181$, $740-(40)-140$, $961-181$ and $822-(40)-140$ keV cascades, the multipole admixtures in the 40, 140, 822 and 961 keV gamma rays have been respectively found as $M1+ 6.25 \times 10^{-2} \% E2$, $M1+(8+1)\% E2$, $M1+1\% M2$ and $M2+E3$. The spins of 921, 1004 and 1142 keV levels have been uniquely determined as $3/2^+$, $5/2^-$ and $1/2^-$.

Accuracy: Errors are quoted in the parenthesis.

Completion date: June 1981.

Discrepancies to other reported data: In good agreement with the recent literature data.

Table 1

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Relative intensity</th>
<th>Energy (keV)</th>
<th>Relative intensity</th>
<th>Energy (keV)</th>
<th>Relative intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.4</td>
<td>0.0035</td>
<td>352.5</td>
<td>0.0209</td>
<td>727.0</td>
<td>0.0585(3)</td>
</tr>
<tr>
<td>40.5</td>
<td>7.7(6)</td>
<td>366.4</td>
<td>9.8(8)</td>
<td>739.7</td>
<td>100</td>
</tr>
<tr>
<td>140.5</td>
<td>686(49)</td>
<td>380.7</td>
<td>0.07(2)</td>
<td>778.2</td>
<td>34.6(19)</td>
</tr>
<tr>
<td>159.7</td>
<td>0.11(4)</td>
<td>409.0</td>
<td>0.009</td>
<td>823.1</td>
<td>1.10(7)</td>
</tr>
<tr>
<td>163.4</td>
<td>0.078(13)</td>
<td>411.5</td>
<td>0.14(2)</td>
<td>861.0</td>
<td>0.005(3)</td>
</tr>
<tr>
<td>181.0</td>
<td>49.8(33)</td>
<td>458.0</td>
<td>0.04(2)</td>
<td>940.0</td>
<td>0.0008(3)</td>
</tr>
<tr>
<td>242.7</td>
<td>0.0118(44)</td>
<td>528.9</td>
<td>0.44(4)</td>
<td>961.0</td>
<td>0.79(6)</td>
</tr>
<tr>
<td>249.0</td>
<td>0.04(3)</td>
<td>537.9</td>
<td>0.0093(3)</td>
<td>1001.7</td>
<td>0.045(12)</td>
</tr>
<tr>
<td>319.8</td>
<td>0.052(2)</td>
<td>580.1</td>
<td>0.021(6)</td>
<td>1057.2</td>
<td>0.007(3)</td>
</tr>
<tr>
<td>321.0</td>
<td>0.056(9)</td>
<td>599.6</td>
<td>0.017(6)</td>
<td>1071.9</td>
<td>0.010(4)</td>
</tr>
<tr>
<td>344.5</td>
<td>0.005(24)</td>
<td>620.7</td>
<td>0.026(2)</td>
<td>1082.0</td>
<td>0.005(2)</td>
</tr>
</tbody>
</table>
Laboratory and Address:

Department of Physics, Faculty of Science, Punjabi University, Patiala-147002, India.

Names:

K. Singh and H. S. Sahota

Facility:

Intrinsic Ge, low energy Si(Li) and large size Ge(Li) detectors.

Experiment:

Precision measurement of gamma-ray intensities and gamma-gamma directional correlations in the decay of ^{125}Sb.

Method:

The high resolution precisely calibrated semiconductor detectors were used to measure the intensities of several low energy lines below 200 keV. With the presence of 58, 693 and 729 keV gamma rays as $729\rightarrow 671$, $729\rightarrow 36$ and $729\rightarrow 0$ transitions, the 729 keV level was confirmed. A 642 keV transition was found as $\frac{7}{2}^+ - \frac{1}{2}^+$ M3 de-excitation. From directional correlation measurements on 204-176, 321-176, 208-428 and 208-463 keV cascades. The spin of 525 keV level was assigned as $\frac{7}{2}^-$ and some M3 content in 428 keV transition, in addition to M1+E2 was found.

Accuracy:

Errors are quoted in parentheses.

Completion date:

September 1981.

Discrepancies to other reported data:

1) *

Publications:

*1) Intensity determinations for weak transitions have been improved
2) New transitions with energies 20.14, 58.29, 111.36, 642.14, 693.23 and 729.62 keV have been observed.
3) From coincidence measurements, the anomaly in the characters of 116.95 and 429.88 keV transitions have been removed.*
Table-1 Relative gamma-ray intensities in the decay of ^{125}Sb

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Relative intensity</th>
<th>Energy (keV)</th>
<th>Relative intensity</th>
<th>Energy (keV)</th>
<th>Relative intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>0.068(2)</td>
<td>204.1</td>
<td>1.14(4)</td>
<td>463.4</td>
<td>35.50(7)</td>
</tr>
<tr>
<td>35.5</td>
<td>14.53(35)</td>
<td>208.0</td>
<td>0.82(2)</td>
<td>497.3</td>
<td>0.015(3)</td>
</tr>
<tr>
<td>58.2</td>
<td>0.91(4)</td>
<td>227.9</td>
<td>0.44(2)</td>
<td>600.5</td>
<td>60.50(10)</td>
</tr>
<tr>
<td>109.2</td>
<td>0.232(5)</td>
<td>315.1</td>
<td>0.013(2)</td>
<td>606.6</td>
<td>17.2(9)</td>
</tr>
<tr>
<td>111.3</td>
<td>0.0042(3)</td>
<td>321.0</td>
<td>1.30(5)</td>
<td>635.8</td>
<td>39.1(22)</td>
</tr>
<tr>
<td>116.9</td>
<td>1.060(10)</td>
<td>380.4</td>
<td>6.02(25)</td>
<td>642.1</td>
<td>0.160(9)</td>
</tr>
<tr>
<td>172.6</td>
<td>0.86(2)</td>
<td>408.0</td>
<td>0.61(3)</td>
<td>671.4</td>
<td>5.9(3)</td>
</tr>
<tr>
<td>176.3</td>
<td>24.5(8)</td>
<td>427.8</td>
<td>100</td>
<td>693.2</td>
<td>0.0015(6)</td>
</tr>
<tr>
<td>178.6</td>
<td>0.130(5)</td>
<td>443.4</td>
<td>1.12(5)</td>
<td>729.6</td>
<td>0.0025(7)</td>
</tr>
<tr>
<td>198.0</td>
<td>0.081(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental Study of 145Cs Decay

Method: SOLIS isotope separator operating on-line with the 4MW research reactor at Soreq Nuclear Research Centre. Integrated target-ion source system with 235U targets enriched to 93% and exposed to a thermal neutron flux of 5×10^{8} n cm$^{-2}$ s$^{-1}$. Selective separation of the A=145 mass chain starting with 145Cs and 145Ba with a Ta surface ionization surface used either as one integral piece or as a separate piece from the target container.

The measurements consisted of simultaneous detection of γ-rays and conversion electrons.

Accuracy: 10% in intensities, 0.1 to 0.3 keV in energies.

Results: Established level scheme of 145Ba, γ-intensities, β-branching and log ft values.

Completion date: Completed

Discrepancies to other reported data: Reasonable agreement in γ-intensities with other reported data.

| **Laboratory and Address:** | Soreq Nuclear Research Centre
70600, Yavne, Israel. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Names:</td>
<td>G. Engler and M.S. Rapaport</td>
</tr>
<tr>
<td>Facilities:</td>
<td>- 4MW research reactor</td>
</tr>
<tr>
<td></td>
<td>- SOLIS isotope separator</td>
</tr>
<tr>
<td>Experiment:</td>
<td>Independent Fission Yields of Short-Lived Br and I Isotopes in Thermal Neutron Fission of (^{235})U</td>
</tr>
<tr>
<td>Method:</td>
<td>SOLIS isotope separator operating on-line with 4MW research reactor at Soreq Nuclear Research Centre, Negative surface ionization integrated target-ion source system with (^{235})U targets enriched to 93% and exposed to thermal flux of (5 \times 10^8 \text{n-cm}^{-2} \text{s}^{-1}). Selective separation of Br and I isotopes. The measurements consisted of (\beta)-scans using a 300 m(\mu) Si surface barrier detector.</td>
</tr>
<tr>
<td>Accuracy:</td>
<td>10-20% depending on isotope</td>
</tr>
<tr>
<td>Results:</td>
<td>Measured independent fission yields of 87-91(^{\text{Br}}) and 138-141(^{\text{I}}).</td>
</tr>
<tr>
<td>Completion date:</td>
<td>Completed.</td>
</tr>
<tr>
<td>Discrepancies to other reported data:</td>
<td>Reasonable agreements with other reported data.</td>
</tr>
<tr>
<td>Publication:</td>
<td>Article in preparation.</td>
</tr>
</tbody>
</table>
ISRAEL

Laboratory and Address

Weizmann Institute of Science, Rehovot, Israel, in collaboration with Los Alamos Scientific Laboratory, U.S.A.

Names

Facility

252Cf source

Experiment

Measurements of short half-lives ($t_{1/2} < 0.5$ nsec) of excited states in prompt fission products

Method

Fission fragments emitted from a very flat thin foil of 252Cf are stopped by a plunger whose distance to the foil is varied in steps from 4×10^{-3}-0.5 cm. Gamma ray spectra are measured with Ge-Li detector in coincidence with the complementary fragment. Lifetimes of known transitions, in particular $4^{+} \rightarrow 2^{+}$ and $6^{+} \rightarrow 4^{+}$ decays in even-even isotopes, are determined from the variation of the non-doppler shifted intensities with the distance.

Accuracy

Dependent on transition intensities

Completion date

In progress
ITALY

Laboratory and Address: ENEL - Centro di Ricerca Termica e Nucleare
Via Rubattino, 54
20134 MILANO, ITALY

Istituto di Ingegneria Nucleare
Politecnico di Milano
Via Ponzio, 34/3
20133 MILANO, ITALY

Names: A. Cesana+, G. Sandrelli, M. Terrani+

Facilities: L54 reactor, high resolution Ge-Li detector.

Experiment: Determination of cumulative fission yields from fast neutron induced fission of Pu-238 and Pu-240, relative to Ba-140. (Work performed under contract ENEL-CRTN/33-1975)

Method: Samples of a few milligrams of highly enriched isotopes (oxide powder), encapsulated in zircaloy vials, were irradiated in a BC filtered neutron flux at the edge of L54 reactor core (1). The samples had the following composition:

<table>
<thead>
<tr>
<th>Target</th>
<th>Mass (mg)</th>
<th>Impurities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu238</td>
<td>2.82 ± 0.01</td>
<td>234U (5%), 237Np (1.2%), 239Pu (0.7%), Pu (1%)</td>
</tr>
<tr>
<td>Pu240</td>
<td>4.60 ± 0.02</td>
<td>239Pu (1%), 241Pu (0.5%), 242Pu (0.3%), 241Am (0.2%)</td>
</tr>
</tbody>
</table>

The absolute activities of the examined fission products were determined by Ge-Li spectrometric gamma-ray measurements performed directly on the fission product mixtures in the irradiated samples. Gamma-ray interferences and contributions from fissioning impurities were duly taken into account. The results are listed below and compared, when possible, with experimental values reported in the literature.

Accuracy: The errors quoted in the table below are intended as standard errors (± 1σ). They are obtained combining in the usual way the errors on the gamma-ray peaks, gamma-ray detection efficiency, gamma-ray selfabsorption in the sample and gamma-ray branchings (as reported in the literature) both for the considered FP and for the Ba-140 taken as reference.
Results:

<table>
<thead>
<tr>
<th>Fissioning Nuclide</th>
<th>238Pu</th>
<th>240Pu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>present work</td>
<td>present work</td>
</tr>
<tr>
<td>91Sr</td>
<td>-</td>
<td>0.41 ± 0.02</td>
</tr>
<tr>
<td>103Ru</td>
<td>1.25 ± 0.03</td>
<td>1.28 ± 0.03</td>
</tr>
<tr>
<td>131I</td>
<td>0.89 ± 0.03</td>
<td>0.70 ± 0.02</td>
</tr>
<tr>
<td>132Te</td>
<td>-</td>
<td>0.86 ± 0.02</td>
</tr>
<tr>
<td>135I</td>
<td>-</td>
<td>1.29 ± 0.04</td>
</tr>
<tr>
<td>140 Ba</td>
<td>1.00 ± (b)</td>
<td>1.00 ± (b)</td>
</tr>
</tbody>
</table>

(a) Experimental Cumulative Yields \(\left(Y_{\text{Ba}} = 5.28\% \right) \).

(b) Preliminary absolute determination: for \(238\text{Pu} \), \(Y_{\text{Ba}} = 5.27\% \); for \(240\text{Pu} \), \(Y_{\text{Ba}} = 5.56\% \).

References:
1) P. Barbucci et al., Energia Nucleare, 26, 11, 542 (1979).
Laboratory and Address: Department of Physics, Faculty of Science, Hiroshima University
1-1-89 Higashi-Sendamachi, Nakaku, Hiroshima 730, Japan

Names: Y. Yoshizawa and Y. Iwata

Facility: Ge(Li) spectrometer

Experiment: Precision measurement of gamma-ray intensities for 125Sb

Method: The Ge(Li) detector was calibrated within uncertainties of 1% with standard sources and cascade gamma rays in the energy range of 90 to 2750 keV. Relative intensities of gamma rays emitted from the 125Sb nuclide were precisely measured. Gamma-ray intensities per decay were obtained from the relative gamma-ray intensities, theoretical internal conversion coefficients and beta branches. The intensity sum of all transitions feeding and crossing the isomer level at 145 keV of the daughter nucleus 125Te.

Accuracy: For strong gamma rays, Accuracies of relative intensities and intensities per decay are within 1% and 1.5%, respectively.

Completion date: April 1982

Discrepancies to other reported data: Large discrepancies to other reported data are not recognized.

Table 1. Gamma-ray intensities for 125Sb.

<table>
<thead>
<tr>
<th>Gamma-ray energy (keV)</th>
<th>Relative intensity (%)</th>
<th>Intensity per decay (%)</th>
<th>Gamma-ray energy (keV)</th>
<th>Relative intensity (%)</th>
<th>Intensity per decay (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>109.3</td>
<td>0.241(24)</td>
<td>0.071(7)</td>
<td>380.4</td>
<td>5.06(4)</td>
<td>1.500(19)</td>
</tr>
<tr>
<td>117.0</td>
<td>0.867(25)</td>
<td>0.257(8)</td>
<td>408.0</td>
<td>0.608(21)</td>
<td>0.180(6)</td>
</tr>
<tr>
<td>172.6</td>
<td>0.694</td>
<td>0.205(12)</td>
<td>427.9</td>
<td>100.0(7)</td>
<td>29.6(3)</td>
</tr>
<tr>
<td>176.3</td>
<td>22.62(21)</td>
<td>6.70(9)</td>
<td>443.5</td>
<td>0.989(23)</td>
<td>0.293(7)</td>
</tr>
<tr>
<td>178.8</td>
<td>0.114</td>
<td>0.032(13)</td>
<td>463.4</td>
<td>35.23(14)</td>
<td>10.44(12)</td>
</tr>
<tr>
<td>198.6</td>
<td>0.050(11)</td>
<td>0.009(3)</td>
<td>497.4</td>
<td>0.009(8)</td>
<td>0.0025(23)</td>
</tr>
<tr>
<td>204.1</td>
<td>1.080</td>
<td>0.320(11)</td>
<td>600.6</td>
<td>59.54(22)</td>
<td>17.64(20)</td>
</tr>
<tr>
<td>208.1</td>
<td>0.788(21)</td>
<td>0.233(7)</td>
<td>606.6</td>
<td>16.94(7)</td>
<td>5.02(6)</td>
</tr>
<tr>
<td>227.9</td>
<td>0.433(12)</td>
<td>0.128(4)</td>
<td>635.9</td>
<td>37.87(14)</td>
<td>11.22(13)</td>
</tr>
<tr>
<td>321.0</td>
<td>1.391(24)</td>
<td>0.412(8)</td>
<td>671.4</td>
<td>6.039(24)</td>
<td>1.790(21)</td>
</tr>
</tbody>
</table>

Publication: Nucl. Instr. Meth. to be publ. 1983
Laboratory and address: Nuclear Physics II Laboratory
Japan Atomic Energy Research Institute
Tokai-mura, Naka-gun, Ibaraki-ken, Japan

Names: U. Furuta, Y. Kawarasaki, M. Mizumoto, Y. Nakajima,
M. Ohkubo, M. Sugimoto, S. Tanaka (JAERI)
Y. Kanda, I. Tsubone (Kyushu Univ.)

Facilities: Neutron time-of-flight spectrometers at the
120 MeV electron linear accelerator.

1. Experiment: Neutron capture cross section measurements in
keV region.

Detectors: 3500 l and 500 l liquid scintillator tank for
capture yield, 6Li-glass and 10B-MaI detectors for
neutron flux and transmission measurements.

Flight paths: 52 m for capture measurements.
56 m for flux and transmission measurements.

Normalization: Saturated resonance method.

(1) Samples: 107Ag, 109Ag (metallic powder enriched to 98.22 and
99.32 % respectively).

Energy region: 3.3 to 700 keV
Accuracy: 5 to 10 % (Experimental uncertainties are represented with a covariance matrix)

Completion data: Measurements are completed
Publication: M. Mizumoto et al. Int. Conf. on Nuclear Data for

(2) Sample: La

Status: Total radiation widths were obtained by the code
TACASI for the s-wave resonances below 2.5 keV.

20(1983)183

(3) Sample: 137Ba ($\text{Ba(NO}_3\text{)}_2$ powder enriched to 81.9 %)

Energy region: 1.5 eV to 100 keV
Completion date: Measurements are completed.

(4) Samples: 155Gd, 157Gd enriched samples

Energy region: 10 eV to 200 keV
Completion date: Measurements are completed.

2. Experiment: Neutron resonance parameters.

Detectors: 6Li-glass neutron detectors
Moxon-Rae detector and 3500 l liquid scintillator tank

Flight paths: 47 m, 56 m and 190 m for transmission measurements
47 m and 52 m for capture measurements
Analysis: The Atta-Harvey area analysis code and the multi-level Breit-Wigner code SIOL
Monte Carlo code CAFIT and TACASI

(1) Samples: 79Br, 81Br
Resonance parameters, S_0, \tilde{D}, $\tilde{\Gamma}$
79Br 156 levels $E_n < 10$ keV
81Br 100 levels $E_n < 15$ keV

Publications: M. Ohkubo, Y. Kawarasaki and M. Mizumoto
Resonance parameters of 79Br and 81Br up to 15 keV. Int. Conf. on Nuclear Cross Sections for Technology, p173, NBS special publication 594, 1980

(2) Samples: 85Rb, 87Rb
Resonance parameters, S_0, \tilde{D}, $\tilde{\Gamma}_Y$
Rb 100 levels $E_n < 17$ keV
Rb 42 levels $E_n < 100$ keV

(3) Samples: 107Ag and 109Ag (metallic powder enriched to 98.22 and 99.32 % respectively)
Energy region: 1.5 to 7000 eV both for 107Ag and 109Ag.
Completion date: Dec. 1982

(4) Sample: 123Sb
Transmission and capture measurements
Completion date: Measurements are completed.
Laboratory and Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan
Names: Ichiro Fujiwara and Nobutsugu Imanishi
Facilities: 5 MW research reactor
[Research Reactor Institute, Kyoto University]
Experiment: Cumulative and independent fission-yields of some fission products in the thermal-neutron induced fission of ^{235}U, ^{233}U and ^{239}Pu.
Method: Radiochemical for fission yields; Instrumental with germanium detectors.
Accuracy: Errors range from 7 % to 20 % with different combinations of fission products and the fissile isotopes.

[Expected] completion date: see Table I
Publication:

Table I

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Completion date</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{128,130,132}\text{Sb}^m,g$, $^{131}\text{Sb},^{131,133}\text{Te}^m,g$ [Ind.]</td>
<td>Sep. 1975</td>
<td></td>
</tr>
<tr>
<td>^{135}I [cum.]</td>
<td></td>
<td>T. Nishi, I. Fujiwara and N. Imanishi, Int. Conf. on Nucl. Structure, Tokyo, Sep. 1977</td>
</tr>
<tr>
<td>$^{132,134,136}\text{I}^m,g$ [Ind.]</td>
<td>Dec. 1976</td>
<td></td>
</tr>
<tr>
<td>$^{138}\text{Cs}^m,g$ [Ind.]</td>
<td>May 1978</td>
<td></td>
</tr>
<tr>
<td>$^{90}\text{Rb}^m,g$ [Ind.]</td>
<td>End of 1983</td>
<td></td>
</tr>
</tbody>
</table>

LABORATORY AND ADDRESS:

Research Reactor Institute, Kyoto University
Kumatori-cho, Sennan-gun, Osaka, Japan

NAMES:

K. Okano, Y. Kawase and Y. Funakoshi

FACILITIES:

On-line mass separator (KUR-ISOL) installed at 5 MW Kyoto University Reactor.

EXPERIMENT:

Half-life measurements of 93Sr, 94Sr and 143Ba.

METHOD:

Gamma-rays following the decay of 93Sr, 94Sr and 143Ba were measured with a Ge(Li) detector.

ACCURACY:

Estimated errors are 0.3-0.6%.

COMPLETION DATE:
The measurements are completed.

PUBLICATIONS:

Laboratory and address: Research Reactor Institute, Kyoto University
Kumatori-cho, Sennan-gun, Osaka, Japan

Names: K. Okano, Y. Funakoshi and Y. Kawase

Facilities: On-line mass separator (KUR-ISOL) installed at 5 MW Kyoto University Reactor.

Experiment: Determination of delayed neutron emission probability by a $\beta-\gamma$ spectroscopic method.

Method: Gamma-rays in the decay chain of ^{94}Rb were measured with a Ge(Li) detector. The P_n value of ^{94}Rb was deduced from γ-ray intensity ratio of 1427.6 keV (^{94}Sr) and 590.2 keV (^{93}Sr).

Accuracy: The associated error of P_n is about 7%.

Completion date: The measurement for the ^{94}Rb precursor is completed. The experiment for ^{95}Rb is now in progress. The extension of the method to other Rb and Cs isotopes is planned.

JAPAN

Laboratory and address: Research Reactor Institute, Kyoto University
Kumatori-cho, Sennan-gun, Osaka, Japan

Names: Y. Funakoshi, K. Okano and Y. Kawase

Facilities: On-line mass separator (KUR-ISOL) installed at 5 MW Kyoto University Reactor.

Experiment: Determination of the decay scheme of 94Sr.

Method: Gamma-ray singles and coincidence spectra in the decay of 94Sr were measured with Ge(Li) detectors. Beta-ray spectra were taken with a Ge(HP) detector.

Accuracy: Gamma-ray energies to 0.1-0.2 keV, gamma-ray intensities to 5-10%.

Completion date: February 1983

JAPAN

Laboratory and address:
Research Reactor Institute, Kyoto University
Kumatori, Sennan-gun, Osaka-fu, 590-04

Names:
Itsuro Kimura, Katsuhei Kobayashi

Facility:
252Cf source of JAERI

Experiments:
Average cross sections to 252Cf fission neutrons, of 24Mg (n,p)24Na, 27Al(n,p)27Mg, 32S(n,p)32p, 51V(n,p)51Ti, 54Fe(n,p)54Mn, 56Fe(n,p)56Mn, 58Ni(n,p)58Co, 59Co(n,α)56Mn, 64Zn(n,p)64Cu,
113In(n,n)113In, 115In(n,n)115In, 197Au(n,2n)196Au, 46Ti(n,p)46Sc, 47Ti(n,p)47Sc, 48Ti(n,p)48Sc and 199Hg(n,α)199Hg

Method:
Gamma-rays (except 32p) from the induced activities were measured with a Ge-Li counter. The average cross section for 27Al(n,\alpha)24Na was taken to be 1.006 mb as a reference value and the other values were normalized to it. In evaluation of errors, covariance matrix was taken into account.

Accuracy:
$3\sim 5\%$

Completion date:
March 1982

Publication:
Laboratory: 1. Department of Nuclear Engineering, Nagoya University
2. Institute for Atomic Energy, Rikkyo University

Address: 1. Furo-cho, Chikusa, Nagoya, Japan
2. Nagasaka, Yokosuka, Kanagawa, Japan

Facilities: TRIGA-II reactor of Rikkyo University, pneumatic transport system, apparatus for electrophoresis, Ge(Li) detector, 4096 pulse height analyser

Experiment: Decay of 147Ce to levels of 147Pr

Method: By using a rapid paper electrophoretic method, sources of 147Ce was separated from fission products of 235U irradiated at the TRIGA-II Reactor. Energies and intensities of gamma rays and a half-life of 147Ce were measured and a decay scheme is proposed.

Accuracy: Less than 0.7 keV for gamma ray energies, 57 ± 5 sec for the half-life

Completion date: April 12, 1982

Discrepancy to other reported data:
Among 14 gamma rays assigned to the decay of 147Ce, 4 gamma rays are newly observed ones, and 2 gamma rays reported previously are not detected. A new level of 147Pr at 2.7 keV is proposed. Level energies of the 291.9 and the 802.4 keV levels are revised from old values.

Laboratory and address: Nuclear Engineering Research Laboratory
Faculty of Engineering
University of Tokyo
2-22 Shirane Shirakata, Tokai-mura
Ibaraki 319-11, Japan

Names: M. Akiyama, Y. Oka, H. Hashikura and S. An

Facilities: Fast Neutron Source Reactor "YAYOI"
A 14 MeV neutron generator

Experiment: Measurements of beta and gamma decay heat from fission products for fast neutron fissions of 233U, 235U, 238U, natural U, 239Pu and 232Th for cooling times of 19 to 24000 seconds. Those measurements were already completed. Measurements of decay heat from fission products for 14 MeV neutron fissions were started.

Method: Samples were irradiated for short periods with fast neutrons or 14 MeV neutrons, and returned immediately after irradiations to a counting area. Gamma-ray energy spectra emitted from the irradiated sample were measured using a NaI detector, and beta-ray spectra were obtained a plastic scintillation detector combined with $\Delta E/\Delta X$ type proportional counter to eliminate gamma-ray effects. Counting times were chosen to provide good statistics within the time range of interest. Energy release rates for beta- and gamma-rays were obtained to integrate beta and gamma energy spectra respectively and summed to obtain total decay heat from fission products.

Accuracy:
- For fast neutron fissions:
 - gamma decay heat for 233U, 235U, 239Pu: 5%
 - gamma decay heat for 238U, natural U, 232Th: 6%
 - beta decay heat: 4%
- For 14 MeV neutron fissions:
 - ~ 8% for gamma decay heat for 238U, 232Th

Completion date: Measurements of decay heat for fast neutron fissions were already completed. Measurements of decay heat for 14 MeV neutron fissions are preliminary and continuing.

Discrepancies to other reported data: Present data of beta and gamma decay heat for fast neutron fissions are in reasonable agreement with results of current summation calculations.

Publications:
Laboratory: 1. Department of Physics, Faculty of Science, Yamagata University
 2. Division of Physics, Japan Atomic Energy Research Institute
Address: 1. Koshirakawa-cho, Yamagata, 990, Japan
 2. Tokai-mura, Naka-gun, Ibaraki, 319-11, Japan
Names: H. Niizeki1), S. Kageyama1), T. Tamura2) and Z. Matsumoto2)
Facilities: 50 Mev Electron linear accelerator (Japan Atomic Energy Research Institute)
Experiments: The level scheme of \(^{103}\text{Ru}\) has been studied in the \(\beta\)-decay of \(^{103}\text{Tc}\)
Method: Radioactivity \(^{103}\text{Tc}\) (from \(^{104}\text{Ru}\) (\(\gamma,p\))); measured \(E_\gamma, I_\gamma, \gamma-\gamma\) coinc, \(I_\beta\), deduced \(\log ft\). \(^{103}\text{Ru}\) deduced levels \(J,\pi\). Enriched isotope, Ge(Li), anthracene scintillation detectors.
Accuracy: Details given in the publication.
Completion: Completed
Labs: Department of Nuclear Chemistry
Chalmers University of Technology
S-412 96 Göteborg
Swedem
Institut für Kernchemie
Johannes Gutenberg Universität
Postfach 3980
D-6500 Mainz
Germany

Department of Nuclear Chemistry
University of Oslo
Blindern, Oslo 3
Norway

Nuclear Chemistry Division
Los Alamos National Laboratory
Los Alamos, New Mexico 87545
U.S.A.

Names: S. Höglund and G. Skarnemark (Göteborg)
N. Kaffrell, H. Tetzlaff and N. Trautmann (Mainz)
J. Alstad (Oslo)
K. Wolfsberg and W. Daniels (Los Alamos)

Facilities: SISAK system for studies of radionuclides with half-lives down to less than 1 s.

Experiments: Half-life determinations, γ-singles, γ-γ coincidence and γ-γ angular correlation measurements. At present, our measurements are concentrated on very neutron-rich isotopes of technetium, ruthenium, rhodium and palladium formed in thermal-neutron induced fission of Cf-249.

Method: Fast chemical on-line separations. The measurements are carried out on flow cells or ion exchange columns. The fission products are transported from the target cell via a gas jet system. Ge-detectors are used.

Completion date: -
SWEDEN

Laboratory and address: The Studsvik Science Research Laboratory, S-611 82 Nyköping, Sweden.

Facility: The OSIRIS on-line mass separator is used to extract selected nuclei from thermally fissioned 235U. The extraction method has been extended in the sense that Al or CF$_4$ is added to the ion source to facilitate separation of halogenes or lanthanides, respectively.

Experiment Characterization of and P_n values for delayed neutron precursors of yttrium and lanthanides1

Method: Simultaneous measurement of neutron and beta activities in a multiscaling mode. Neutron counter consisting of 29 3He counters imbedded in paraffine beta counter being a 2 mm plastic scintillator. Separation of fluoride ions with CF$_4$ addition to the ion source.

1 147La, 147,149Ce, 147,149Pr
Indefinite for the P_n studies as such.

Experiment
Total beta decay energies and atomic masses.

Method:
Beta particles were recorded in coincidence with gamma rays depopulating known levels in the daughter nucleus. The end-point energies of the beta-spectra were determined, and by adding the level energy the total beta-decay energies were obtained.
The beta-particles were recorded in a Si(Li) detector system and the gamma rays in two Ge(Li) detectors.

Further experiments will probably be performed using other techniques, such as HPGe detector for registration of beta particles or well calibrated plastic scintillators.

Indefinite for the experiment as such.

Publication:

[^2]: 116–121\textsubscript{Ag} and 119,121\textsubscript{Cd}

Experiment: Yields of products from thermal-neutron induced fission of 235U.

Method: The activity of a fission product is determined by means of gamma spectroscopy and of neutron counting. After correction for delay, counting efficiency, branching ratio and reactor power the result will be a product of the fission yield and the overall separation efficiency. The latter factor is nearly the same for all isotopes of a given element. Thus relative yields are directly obtainable and have to be normalized against the yield of one of the isotopes determined absolutely by any other technique.

Completion date: 1983.

Experiment: Gamma branching ratios for fission products.

Method: Gamma branching ratios for products induced in thermal-neutron fission of 235U have been
determined by simultaneous measurement of the gamma and beta activities. Well calibrated detectors have been used, a Ge(Li) detector for the determination of the intensities of certain gamma transitions and a plastic scintillator for determination of the beta activity.

Completion date: 1984.

Experiment: Nuclear spectroscopic studies of the decays of 75,77Zn, and 139,140I. The studies aim at level scheme determinations to be combined with the Q_{β}-studies.

Completion date: 1983.

Publication: E. Lund, K. and total de

6. Names: B. Fogelberg

Experiment: Nuclear spectroscopic studies of the decays of 113,114,115Ag. The studies aim at level scheme determinations to be combined with the Q_{β}-studies.

Experiment: Nuclear spectroscopic studies of fission product nuclei. The energy levels and transition probabilities between these are studied. Recent studies include levels populated in the decays of 121Ag, 131In, 133Sn and 149,150Ce.

Publications:

Laboratory:
Department of Nuclear Physics, University of Lund.

Names:
P. Andersson, R. Zorro and I. Bergqvist.

Activity:
Neutron capture cross section measurements with the activation technique. Experimental and theoretical determination of corrections due to background low energy neutrons produced in reactions like \((n,n')\) and \((n,2n)\) and charged-particle reactions like \((p,n)\) and \((d,n)\) in target backing etc.

Facilities:
3 MV pelletron accelerator, Ge(Li) spectrometers, proton recoil telescope, long-counters.

Results:
Measurements in the neutron energy range 2-4.5 MeV for the nuclei \(^{115}\text{In}\) and \(^{197}\text{Au}\).

Publications:
P. Andersson, R. Zorro and I. Bergqvist, Nuclear Physics Reports LUNFD6/(NFFR)/1-26/(1982).

Work in progress:
Most measurements for \(^{115}\text{In}\) and \(^{197}\text{Au}\) in the neutron energy range 4.5-7.5 MeV have been concluded.

Address:
Department of Nuclear Physics, University of Lund, Sölvegatan 14, 223 62 Lund, Sweden.

Contact:
P. Andersson.
Laboratory & address: Eidg. Institut für Reaktorforschung, CH-5303 Würenlingen, Switzerland

Institut für anorganische, analytische und physikalische Chemie, Universität Bern, CH-3012 Bern, Switzerland

Name: H.R. von Gunten, H.N. Erten

Facility: Swimming-pool type reactor (SAPHIR)

Experiments: Determination of independent and cumulative yields in the fission of 232Th, 233U, 235U, 239Pu, and other nuclides

Absolute yields in reactor neutron fission of 232Th

Completion date: The measurement programme has been discontinued. The final publications are given below.

Publications:

H.N. Erten, A. Grütter, E. Rössler, H.R. von Gunten

D.T. Jost and H.R. von Gunten
Independent yields of 92Mo in the thermal neutron-induced fission of 233U, 235U and 239Pu. J. inorg. nucl. Chem. 43, 2629 (1981)

H.N. Erten, A. Grütter, E. Rössler and H.R. von Gunten
CERN, Switzerland

Laboratory: ISOLDE, CERN
and address: CH-1211 Genève 23, Switzerland

Facilities: ISOLDE and Proton Synchrotron. Isotopically pure samples are obtained by on-line isotope separation of products formed in proton induced reactions in uranium carbide, thorium oxide or tantalum metal foil targets.

1. Experiment: Measurement of delayed neutron emission probability and neutron spectra for \(^{89-92}\text{Br} \)

Methods: Measurements by means of \(^{3}\text{He}\)-spectrometers for neutron spectra and by a system of \(^{3}\text{He}\) proportional counters imbedded in paraffin to obtain the neutron counting rate. Branching ratios are obtained by comparing the neutron rates to the beta rates obtained in a thin plastic scintillator, by means of multi-scaling or beta-neutron coincidences.

Discrepancies A \(P_n \) value of \(27.8 \pm 3.3 \% \) is obtained for \(^{91}\text{Br} \), in disagreement with a value of \(18.2 \pm 1.3 \% \) obtained by Aleklett et al. (Z.Phys. A295 (1980) 331)

2. Experiment: Measurement of the properties of states in \(^{132}\text{Sn} \) populated in the beta-decay of \(^{132}\text{In} \)

Methods: Delayed neutron spectra by means of \(^{3}\text{He}\)-spectrometers. Gamma-ray spectroscopy and lifetime determinations by measuring delayed coincidences between electrons and gamma-rays.

Publication: Excited states in the doubly closed shell nucleus \(^{132}\text{Sn} \). Z.Phys. A306 (1982) 95
CERN, Switzerland

(cont'd)

3. **Experiment:** Investigation of the decay of 133In and the properties of states in 133Sn

Methods
Delayed neutron detection, gamma-ray spectroscopy

Result:
Discovery of 133In, $T_\frac{1}{2} = 180 \pm 20$ ms

Names:
UNITED KINGDOM

(same as INDC(NDS)-130)

Laboratory and Address: AERE Harwell

UKAEA
AERE, Harwell,
Oxfordshire OX11 ORA
U.K.

Names: J.G. Cuninghame, H.H. Willis

Facilities: ZEBRA - BIZET

Experiment: To measure the effect of change of reactor neutron spectrum on fission yields.

Method: Four irradiations, each of two ^{235}U, two ^{238}U and two ^{239}Pu metal beads of approx. 100mg. weight have been made; two were in the inner breeder island and two in the outer core. One of the samples of each of the fissile materials was counted directly on a calibrated Ge(Li) detector, while the other was dissolved and used to prepare purified samples of certain fission products of very low yield, viz. As, Ag, Cd, Sn, Sb and Rare Earths.

Final results have now been obtained which give complete fission yield curves for fission of ^{235}U in both the inner and outer core positions of a "conventional" fast reactor core arrangement. They show that there is no significant change in fission yields between the two core positions, even though the neutron spectrum in the outer position is much softer than that in the inner. Final calculations of the other 10 fission yield curves are now in progress.

Accuracy: Expected $\pm 10\%$

Completion date: Expected 1983
UNITED KINGDOM

Laboratory and Address: AERE, Harwell, UKAEA
AERE, Harwell,
Oxfordshire OX11 ORA
U.K.

Names: J. G. Cuninghame, H. E. Sims

Facilities: Variable Energy Cyclotron
Helium jet recoil transport system.

Experiment: Decay scheme studies on short-lived fission products.

Method: Generate fission products by cyclotron irradiation, cluster with potassium chloride,
and transport by helium jet to detection system for decay scheme study and analysis.
Experiment:
\(^3\)H yield in thermal and fast fission spectra for U and Pu isotopes

Facilities:
GLEEP and 'ZEBRA' Reactors

Method:
The tritium produced in fission is converted to tritiated water, separated from other fission products and measured by liquid scintillation counting. A preliminary experiment has been completed in which solutions of \(^{235}\)U were irradiated in a thermal flux. Samples have been irradiated in GLEEP (\(^{235}\)U + \(^{239}\)Pu in solution) and in ZEBRA (\(^{235}\)U + \(^{239}\)Pu metal) and await analysis. Samples of \(^{240}\)Pu and \(^{241}\)Pu have been obtained for further experiments.

Accuracy:
\(\pm 10\%\)

Completion date:
experiment interrupted, continuation pending.
UNITED KINGDOM

Laboratory and Address: DNPDE
Dounreay Nuclear Power Development Establishment
UKAEA, Northern Division
Thurso, Caithness, Scotland KW14 7TZ

Names: T W Kyffin, C G Allan

Facilities: PFR

Experiment: The measurement of the absolute yields of 90Sr, 137Cs, 144Ce, 143, 145, 146, 148Nd and perhaps other fission products, from the fission of 235U, 238U, 239Pu, 240Pu and 241Pu.

In progress

Method: Twelve sealed stainless steel capsules are to be irradiated. Of these,

3 capsules contain 235U and highly enriched uranium dioxide,
3 capsules contain 239Pu as low 240Pu content plutonium dioxide,
2 capsules contain 238U as depleted uranium dioxide with an isotopic analysis of 99.7% 238U,
1 capsule contains 240Pu as a dried aqueous solution of plutonium with an isotopic analysis of 99% 240Pu,
1 capsule contains 241Pu as a dried aqueous solution of plutonium with an isotopic analysis of 93% 241Pu, and
2 capsules contain no added fissile material.

The 235U and 239Pu capsules contain stainless-steel powder mixed with the fissile material dioxide for heat transfer reasons.

It is expected that the 235U and 239Pu capsules will receive irradiation corresponding to about 35% burn-up of the fissile material, the 238U capsule to about 1.5% burn-up, the 240Pu capsule to about 10% burn-up and the 241Pu capsule to about 50% burn-up.

A set of capsules identical to the irradiated set except for irradiation in the reactor will be dissolved and analysed alongside the irradiated set, the objective being to improve the reliability of the analyses.

The aim is to correlate loss of fissile material during irradiation with the amounts of fission products formed, for each capsule, (except 238U) to enable absolute measurements of fission yields to be obtained.

Accuracy: $\pm 2\%$ for 235U and 239Pu fission yields
$\pm 6\%$ for 236U, 240Pu and 241Pu fission yields

Expected completion date: 1986
<table>
<thead>
<tr>
<th>Laboratory and address:</th>
<th>National Physical Laboratory Queens Road Teddington Middlesex TW11 OLW, UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Names:</td>
<td>P Christmas, P Cross</td>
</tr>
<tr>
<td>Facilities:</td>
<td>Iron-free, $\sqrt{21}$ magnetic β-ray spectrometer.</td>
</tr>
<tr>
<td>Experiment:</td>
<td>Measurement of β-spectra of $^{90}\text{Sr} - ^{90}\text{Y}$ to determine shape factors and endpoint energies. Similar measurements are being made by three other European Laboratories using sources prepared from NPL solution. This intercomparison has been organized by NPL on behalf of the International Committee for Radionuclide Metrology (ICRM).</td>
</tr>
<tr>
<td>Accuracy:</td>
<td>Endpoint energies will be determined with an expected uncertainty of ± 1 keV.</td>
</tr>
<tr>
<td>Completion date:</td>
<td>Measurements have been made. Target for completion of intercomparison is end 1983.</td>
</tr>
</tbody>
</table>
UNITED KINGDOM

Laboratory and address:
1) National Physical Laboratory
Queens Road
Teddington
Middlesex TW11 OLW, UK

2) Fachinformationszentrum Karlsruhe
Energie, Physik, Mathematik
D-7514 Eggenstein Leopoldshafen, FRG

Names:
H. Behrens 2), P. Christmas 1)

Experiment:
Reanalysis of Cs-137 beta decay data

Result:
Improved fits to previously measured beta spectra of Cs-137 (ref. 1) were obtained using a more realistic shape factor for the second-forbidden decay, with single-particle estimates of nuclear matrix element ratios. Revised decay scheme data were deduced, including the new value \(85.21 \pm 0.07\) per cent for the gamma-ray intensity per disintegration. This work has been published (ref. 2).

Publications:
UNITED KINGDOM

Laboratory and address: Birmingham Radiation Centre
University of Birmingham
P.O. Box 363
Birmingham B15 2TT
United Kingdom

Names: J.G. Owen, J. Walker, D.R. Weaver

Facilities: 3MV Dynamitron accelerator (Birmingham) and the
Tandem Van de Graaff and IBIS (Harwell)

Experiments: Delayed neutron spectrum measurements following
monoenergetic fast neutron induced fission in ^{235}U
and ^{239}Pu

Spectrum measurements of Am/Li sources as recommended
by the March 1979 Vienna Consultant's Meeting on Delayed
Neutron Properties have been completed. An international
round-robin of measurements of one of these Am/Li sources
(a 5 Ci one belonging to NPL England) is in progress.
Requests to join this round-robin should be sent to
D.R. Weaver.

Method: ^3He spectrometers; for delayed neutron measurements

cyclic irradiation and counting to give near-
equilibrium contributions from all delayed neutron
groups.

Accuracy: A full covariance matrix is calculated.

Publication: A paper on the measurement of the NPL's 5 Ci Am/Li
source has been published.
Laboratory and Address: Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

Names: L. E. Glendenin, J. E. Gindler, J. W. Meadows

Facilities: Fast-neutron generator facility (FNGF)

Experiment: Determination of fission yields for monoenergetic neutron-induced fission as a function of incident neutron energy over the range 0.1 to 8 MeV.

Method: Yields determined (1) radiochemically with either β- or γ-counting (RC) and (2) by γ-counting irradiated foils of fissionable material (γ). Neutrons produced by Li-p or D-d reaction. Flux monitored with fission chamber utilizing as the fission source the same material as that being irradiated. Absolute yields determined from flux measurements and/or 200% normalization of mass-yield distribution.

Accuracy: Yields > 1% determined by γ-counting: 3-5%
Yields < 1% determined by γ-counting: 5-20%
Yields determined radiochemically with β-counting: 10-20%

Completion date: Measurements completed and published or in press for \(^{238}\text{U}(n,f) \), \(^{232}\text{Th}(n,f) \), \(^{235}\text{U}(n,f) \) and \(^{239}\text{Pu}(n,f) \).

Publications:

Laboratory and address:

Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439 U.S.A.

Research:

Fast neutron elastic scattering and total cross section studies for the Z=39 to 52 region and development of a regional optical model.

Authors:

Facilities:

Argonne FNG (Fast-Neutron Generator), 10-angle Time-of-Flight Facility.

Status:

Total cross section measurements for Y, Nb, Rh, Pd, In, Sn and Sb from 0.8 – 4.5 MeV and elastic scattering cross section measurements for Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn and Sb from 1.5 – 4.0 MeV have been completed. A series of reports on results for specific elements have been either issued (see below) or are in the final stages of completion. A regional optical model has been developed. Furthermore, a journal article summarizing all this work is in preparation.

Publications:

Laboratory and address:

Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439 U.S.A.

Research:

Neutron total cross section data have been measured for 11 fission-product elements (Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn and Sb) in the energy range 47 keV to 20 MeV using both white and monoenergetic spectrum techniques.

Authors:

W. P. Poenitz and J. Whalen

Facilities:

Argonne FNG (Fast-Neutron Generator). Automated sample changer.

Status:

Measurements have been completed and a summary report is in the final stages of preparation.
Laboratory and address:

Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439 U.S.A.

Research:

Measurement of capture activation cross sections for $^{94,96}\text{Zr}$ and $^{98,100}\text{Mo}$ at Thermal and 30-keV energies and fast-neutron capture measurements and model calculations for $^{110}\text{Cd}(n,\gamma)^{111}\text{mCd}$ have been performed.

Authors:

W. P. Poenitz, D. Smith, J. Meadows, P. Moldauer and J. Wyrick

Facilities:

Argonne FNG (Fast-Neutron Generator)

Status:

Results from this work were reported at the NEANDC/NEACRP Specialist's Meeting on Fast-Neutron Capture Cross Sections which was hosted by Argonne National Laboratory.

Publications:

Laboratory and address:

Argonne National Laboratory
9700 S. Cass Avenue
Argonne, Illinois 60439 USA

Research:

Fast-neutron capture cross sections have been measured, using a prompt detection technique, for Y, Zr, Mo, Ag, Cd, In, Sb, La, Eu, Gd, Tb, Dy, Er, Yb, Hf, W, Re and Pt in the 0.5-4.0 MeV neutron energy range. Included among these are several fission-product nuclei. Furthermore, the data on other nuclei are of interest for the development of nuclear models for the capture process in the fission-product mass region.

Authors:

W. P. Poenitz

Facilities:

Argonne FNG (Fast-Neutron Generator), Large-liquid-scintillator tank.

Status:

Work has been completed and reported at the NEANDC/NEACRP Specialist's Meeting on Fast-Neutron Capture Cross Sections (see below).

Publications:

Laboratory and Address: Brookhaven National Laboratory
Upton, New York, 11973

Names: R. E. Chrien, R. L. Gill, Z. Berant, A. Piotrowski,
R. Petry, D. D. Clark, Y. Y. Chu, R. F. Casten and
D. D. Warner

Facilities: On-Line Mass Separator "TRISTAN"
Surface Ionization Source for Production of Alkaline
Metals
High-Temperature Thermal Ionization Source
High-Temperature Plasma Source
Febiad Source
PDP-11-based Data Acquisition System

Experiments: β and γ spectroscopy of fission product nuclei
Nuclear masses far from stability
Delayed neutron production and spectra
Time-of-flight, recoil and He 3 spectrometer
Angular correlations and perturbed angular
 correlations

Accuracy: State-of-art precision for spectroscopic experiments
±10% in delayed neutron probabilities
±2% in half lives, typical
\[Q_\beta \pm (10 \text{ to } 100 \text{ keV}) \]

Comments: TRISTAN is a multi-user facility with participants
from the following institutions, in addition to the
local group:

Clark University
Cornell University
Idaho National Engineering Laboratory
Iowa State University
Los Alamos National Laboratory
Lawrence Livermore National Laboratory
Louisiana State University
McGill University
Pacific Northwest Laboratory
Texas A&M
Lafayette College
University of Maryland
University of Oklahoma

For detailed publication list and participant list,
please refer to individual contributions. A summary
of the program is available in the DOE-NDC Progress
Reports, available from the National Nuclear Data
Center.
- Recoil spectrometer measurements of beta-delayed neutron spectra (93-95Rb) (INEL/BNL)

- Delayed neutron spectra by time-of-flight (95Rb) (Cornell/BNL)

- Precise Q-values for neutron-rich Rb and Cs isotopes and 146La, 148La (Clark/Lafayette/Ames/Oklahoma) [1]

- Angular correlation studies of the transitional nuclides 142-146Ce and the low lying 0⁺ excited states

- Band structure in 148Ce (Maryland/Clark/BNL/Ames) [2]

- Levels of 146Ce from the decay of 146La (Ames/Maryland/Oklahoma/BNL)

- The decay of mass-separated 144,146,148Ba to levels in 144,146,148La (Maryland/BNL/Clark)

- Low-lying levels in the N=85 isotope 141Ba (Ames/Maryland/BNL) [3]

- 99Rb and 99Sr decay (Oklahoma/Maryland/BNL)

- Studies of the decay of 145,147Cs and 145,147Ba and a reinvestigation of the decay of 147La (Oklahoma/BNL)

- Neutron emission probabilities - Cu, Ga, Br, Kr and Rb precursors (A=75-104); Ag, In, I, Xe, Cs (A=121-149) (PNW/BNL) (see also PNW)

- β-spectra and β-strength functions with a E-ΔE coincidence telescope (McGill)

- Perturbed angular correlation studies - g-factor measurements; 144,146Ba, 98Sr, 97Zr, 124Sn (BNL/Ames/Maryland)

- Decay of low spin 148,150,152Pr (Ames/Maryland/BNL)

- Levels in 122Ag from 122Cd (BNL/Clark/Ames)

- 124Ag level scheme (BNL/Clark/Ames)

- 142,144Ce angular correlation studies (Maryland/BNL/Clark/Ames/Oklahoma)

U.S.A.

Laboratory and address: Idaho National Engineering Laboratory
EG&G Idaho, Inc.
P.O. Box 1625
Idaho Falls, Idaho 83415 USA

Experiment: Nuclear decay properties ($T_{1/2}$, γ-branching, β-branching) of short-lived fission products.

Facility: Two 600-µg 252Cf fission-product sources coupled via He-gas jet transport to a chemical separation laboratory and an on-line mass separator.

Method: Fast on-line chemical or mass separations followed by γ- and β-ray measurements.

Measurements Completed: New isotopes 165Tb and 168Dy have been discovered and decay properties measured. 152, 153, 154Pm measurements in progress.

Publications:

* Half-lives given for 155Pm, 163Gd and 160Au.
U.S.A.

(Cont'd)

Facilities: 1) 4π β-γ coincidence counting system
 2) Calibrated Ge(Li) spectrometers

Experiment: Determination of absolute γ-ray emission probabilities for important fission-product isotopes.

Method: The decay rates are determined by the 4π β-γ coincidence counting system, which has two separate pulse-processing systems. One system is based on fixed pulse widths and an overlap coincidence circuit. The γ-ray emission rates are determined by Ge(Li) spectrometers whose efficiencies have been measured to an accuracy of ±1-1/2% (1σ) between 0.3 and 2 MeV.

Accuracy: ±1% to ±5% (1σ uncertainty).

Measurement Completed: Emission probabilities of the 316keV γ ray emitted in the decay of 146Ce measured to an accuracy of ~3% (1σ level).

Publications:

Experiment: Precise γ-ray energy measurements for energy calibration standards.

Facility: γ-ray spectrometers using Ge detectors.

Method: Comparison of γ-ray energies by measurement of spectra including lines of known and unknown energies.

Laboratory and address: Idaho National Engineering Laboratory
EG&G Idaho, Inc.
P. O. Box 1625
Idaho Falls, Idaho 83415 USA

Names: R. A. Anderl, Y. D. Harker

Experiment: Integral cross-section measurements in fast-reactor-type environments.

Completion date: This measurement programme has been terminated. The last publications are given again below.

Publications:

*) 143-146, 148, 150Nd, 147, 149Sm, 151-154Eu
For many years, personnel at the Idaho Chemical Processing Plant (now operated by Exxon Nuclear Idaho Company, Inc.) at the Idaho National Engineering Laboratory, have been involved in the accurate measurement of absolute fission yields for use on the determination of burnup in fast reactor fuels. As a continuing effort of this program, an irradiation of heavy element nuclides (233U, 235U, 239Pu, and 241Pu) was conducted in the eight-day full-power run associated with the FFTF Reactor Characterization Experiment at Hanford, Washington.

The primary purpose is to generate a group of heavy element reference standards for which the number of fissions and burnup are well known. By combining this experiment with others of a similar nature, these samples will serve as reference and comparison standards. A secondary purpose is to verify the fast reactor fission yields measured in EBR-II and to assess the validity of using EBR-II values for irradiations conducted in FFTF.

For this experiment, ten samples each of highly-enriched 233U, 235U, 239Pu, and 241Pu (as oxides), sealed in high-purity nickel capsules were irradiated. Capsules were placed axially in one of the removable pins in Rows 1, 4, 5, and 6. Each pin was located immediately adjacent to an ILLR dosimetry package pin. The amount of material in each sample capsule was adjusted such that each individual sample will give about 10^{19} fissions.

Schedule: The irradiation was completed in November 1981. Analysis is planned to begin in Idaho when funding is available.

Method: The samples in Rows 1 and 6 will be dissolved and analyzed for the following fission product elements using isotope dilution mass spectrometry: Kr, Rb, Sr, Zr, Mo, Ru, Xe, Cs, Ba, La, Ce, Nd, and Sm. The absolute number of fissions will be established by summing the number of fission product atoms in the heavy mass peak. The samples in Rows 4 and 5 will only be partially analyzed principally for Nd, Cs, Kr, and Xe to establish relative fission yield values for the intermediate reactor positions.

Special Comment: Funding for this experiment was discontinued in 1982. Work will be resumed when funding is made available.
108

U.S.A.

LABORATORY

Lawrence Livermore Laboratory
University of California
P.O. Box 808
Livermore, CA 94550, U.S.A.

McClellan Central Laboratory
1155th Technical Operations Squadron
McClellan AFB, CA 95652

NAMES

D. R. Metheway
A. L. Prindle
D. H. Sisson

+ M. V. Kantelo
+ R. A. Sigg

FACILITY

FLATTOP Critical Assembly (Pu), Los Alamos Scientific Laboratory

1. EXPERIMENT

Measure fission yields for fission of Am-241 induced by fission-spectrum neutrons.

METHOD

Measurements were made by doing chemical separations on the irradiated Am-241 samples and by using the recoil catcher-foil technique. Absolute yields are based on a normalization of the mass-yield curve, and on the use of the 235U(n,f) and 238U(n,f) monitor reactions. The accuracy of the measurements is about $\pm 5\%$.

COMPLETION DATE

The experiment is finished.

PUBLICATION

1Present address: E. I. duPont de Nemours and Co., Savannah River Laboratory, Aiken, SC 29808.
LAWABORATORY
Lawrence Livermore National Laboratory
University of California
P. O. Box 808
Livermore, CA 94550, U.S.A.

NAMES
D. R. Nethaway
F. F. Momyer
C. F. Smith
N. A. Bonner

FACILITY
Livermore RTNS-2 Accelerator (D-T Neutrons)

2. EXPERIMENT
Measure fission yields of rare gases, especially 10.7-\(85^{\text{Kr}}\), for fission of \(235^{\text{U}}\), \(238^{\text{U}}\), and \(239^{\text{Pu}}\) induced by 14-15 MeV neutrons. Several rare-earth yields will also be measured, such as \(156^{\text{Eu}}\) and \(161^{\text{Tb}}\).

METHOD
Measurements will be made by separating and counting the gaseous products from the dissolved target. Other products will be measured by direct Ge(Li) counting of an aliquot of the solution, and by chemically separating and counting various rare-earth products. Fission yields will be measured relative to known yields of products such as \(95^{\text{Zr}}\), \(99^{\text{Mo}}\), and \(147^{\text{Nd}}\). We plan to have about \(10^{14}\) fissions in each target of 1 g of uranium or plutonium. The relative fission yields will be measured with an accuracy of about 2-5%.

COMPLETION DATE
We have finished several irradiations so far: \(235^{\text{U}}\) at 14.3 and 14.7 MeV, \(238^{\text{U}}\) at 14.4 MeV, and \(239^{\text{Pu}}\) at 14.8 MeV. We plan to have two more irradiations this year, \(238^{\text{U}}\) at 14.8 MeV and \(239^{\text{Pu}}\) at 14.4 MeV, and then prepare a report on the results.
<table>
<thead>
<tr>
<th>Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
</tr>
<tr>
<td>Name:</td>
</tr>
<tr>
<td>Facility:</td>
</tr>
<tr>
<td>Experiment:</td>
</tr>
<tr>
<td>Method:</td>
</tr>
<tr>
<td>Accuracy:</td>
</tr>
<tr>
<td>Completion Date:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* 86Kr, 127,129I, 136Xe, 151,153Eu.
1. Names: J. K. Dickens and J. W. McConnell
Facilities: Fast Rabbit Transport Station at the ORR.
Experiment: Absolute yields of 37 fission products having half-lives between 7 min and 65 days, representing 25 mass chains created by thermal-neutron fission of 229Th have been determined.
Method: A 15 µgram sample of 229Th was irradiated three times, once for 150 sec, a second time for 1200 sec, and a third time for 120 sec, with thermal neutrons. Counting intervals were between 10 min and 0.4 yr following the end of the irradiation. Gamma-ray measurements following the first two irradiations were performed using a 90 cc Ge(Li) detector; measurements following the third irradiation were performed using a high-resolution intrinsic-Ge detector.
Accuracy: Relative 1σ uncertainties range between 2 and 15%; absolute uncertainties are dominated by an 8% uncertainty in absolute normalization, which is based on good agreement of the total mass yield for A between 76 and 152 with the expected 200% total yield.
Discrepancies: Deduced fission yields are in reasonably good agreement with previous measurements. Deduced mass yields agree with evaluation for $A \leq 100$ and $138 \leq A \leq 141$, and disagree for $129 \leq A \leq 137$ and $A > 141$.
Completion date: April 1982.

Facilities: Fast Rabbit Transport Station of the High Flux Isotope Reactor (HFIR)
Experiment: Absolute yields of 23 fission products having half-lives between 6 hr and 65 days, representing 16 mass chains created by thermal-neutron fission of a sample enriched in the isotope 245Cm have been determined.
Method: A 0.077 µgram sample of ^{243}Cm (in the form of curium nitrate) was irradiated for 150 sec by thermal neutrons. Unseparated fission-product γ-ray spectra were obtained between 22 hrs and 79 days after the end of the irradiation.

Accuracy: Relative 10 uncertainties are between 1 and 25%. Absolute uncertainties have not yet been determined.

Completion date: First part, December 1981. Completion of the total data reduction is anticipated by December 1983.

Discrepancies: There are no prior measurements for $^{243}\text{Cm}(n,f)$ fission-product yields.

Laboratory and Address:

Pacific Northwest Laboratory
P. O. Box 999
Richland, WA 99352
USA

Names: P. L. Reeder and R. A. Warner

Facilities:

SOLAR - Spectrometer for On-Line Analysis of Radionuclides. This is an on-line mass spectrometer which incorporates a 235U target in a surface ionization source located in the thermal column of a 1 MW TRIGA reactor at Washington State University, Pullman, WA.

Experiment:

Isomer yield ratios for 235U + n_{th}.

Method:

Ratios of independent yields of fission product isomers are being measured for thermal neutron fission of 235U by use of an on-line mass spectrometric technique. A short burst of neutrons from the TRIGA reactor is used to produce various isomers of Br, Rb, In, I and Cs fission products within the surface ionization source. Selective ionization performs the rapid chemical separations and magnetic analysis performs the mass separation to give the desired nuclides as a beam of ions. Ions are collected on a moving tape collector system for a short time interval during and after the neutron pulse. The radioactive decay of the two isomers is followed by beta and gamma counting to determine the relative yield of each isomer.

Accuracy:

The final accuracy will probably depend more on how well the decay schemes are known for particular cases than on statistical uncertainties.

Completion Date:

Work is continuing.
Laboratory and Address:

Pacific Northwest Laboratory
P. O. Box 999
Richland, WA 99352

Names: P. L. Reeder and R. A. Warner

Facilities:

TRISTAN - This is an on-line isotope separator located at the
High Flux Beam Reactor at Brookhaven National Laboratory, Upton, NY

Experiment:

Half-lives, P_n values, average energies, and neutron gated gamma
spectra are being measured for separated delayed-neutron precursors.

Method:

Delayed neutrons from separated precursors are counted in a poly-
ethylene moderated counter containing 3 rings of counter tubes.
Beta and neutron growth and decay curves are measured to determine
half-lives and P_n values. Data have been obtained for Sr and Y
precursors at masses 97-99, Ba and La precursors at masses 146-148,
Ag precursors at masses 121-124, and In precursors at masses 127-130.
Work is continuing on precursors at other elements. Gamma spectra
in coincidence with delayed neutrons are being measured to provide
partial neutron emission probabilities to excited states of the
$(A-1)$ daughter. The P_n values are being compared to predictions of a
beta-decay model.

Accuracy:

The accuracy of the P_n measurements depends primarily on the
accuracies of the neutron and beta counter efficiencies. The
overall accuracy is expected to be about ±7%.

Discrepancies:

P_n values for Sr, Y, Ba, and La precursors at masses 97-99 and
146-148 are found to be very small (<1%).

Completion Date: Work is continuing.

Publications:

1. P. L. Reeder, R. A. Warner, and R. L. Gill, "Half-lives and
 Emission Probabilities of Delayed Neutron Precursors $^{121-124}$Ag",

2. P. L. Reeder and R. A. Warner, "Delayed Neutron Precursors at
Laboratory and address: University of Illinois
Nuclear Radiation Laboratory
214 Nuclear Engineering Lab.
103 South Goodwin Ave.
Urbana, Illinois 61801
U.S.A.

Names: Bernard W. Wehring

Facilities: Illinois Advanced TRIGA 1.5-MW Nuclear Reactor,
HIAWATHA Fission-Fragment Mass Spectrometer.

Experiment: Direct Physical Measurement of the Primary Postneutron-
Emission Nuclide Yields in Thermal-neutron Fission of

Method: The fission-fragment recoil mass spectrometer HIAWATHA,
consisting of a cylindrical focusing electrostatic analyzer
and time-of-flight system, is used to determine fragment
masses while fragment energy loss is used to identify
fragment atomic numbers in multiparameter experiment. All
fragment velocities and charge states are measured.

Accuracy: <0.5-amu mass resolution, achieved,
about 1-Z atomic-number resolution, achieved,
1% standard error (relative error) in largest mass yield, achieved,
0.02-0.1% standard error (absolute error) in nuclide yields,
achieved.

Completion date: Work is continuing

Publications:

Gino Dilorio and B. W. Wehring, "HIAWATHA, A Fission-Fragment Recoil Mass

R.B. Strittmatter, "Nuclide Yields for Thermal Fission of Uranium 235,"

R.B. Strittmatter and B.W. Wehring, "Direct Measurement of Nuclide Yields
in Thermal-Neutron Fission Using HIAWATHA," Proceedings of the
International Conference on Neutron Physics and Nuclear Data for Reactor

R.B. Strittmatter and B.W. Wehring, "Fragment Atomic-Number Identification
Using a Gas Ionization Chamber in Fission Yield Measurements," Nucl.

B.W. Wehring, S. Lee, G. Swift, and R.B. Strittmatter, "Light-Fragment
Independent Yields for Thermal-Neutron Fission of U-233," UILU-ENG-80-

Shengdar Lee, "Yield, Kinetic Energy, Pairing Effect, and Shell Effect of
Light Fission Products for Thermal-Neutron Fission of Uranium-233,"
Laboratory and address: University of Lowell, Lowell, Mass. 01854

Names: G. Couchell, W. Schier

Facilities: 5.5 - MV Van de Graaff, 1 MW swimming pool reactor, helium gas jet and tape transport system

Experiment: Delayed neutron energy spectra as a function of time following fission; initially for 235U and 239Pu.

Method: Beta-neutron time-of-flight method using helium jet and tape transport system together with Pilot U plastic and 6Li-glass scintillators. Initially accelerator, later reactor neutrons are used.

Completion date: In progress; composite spectra were measured with Pilot U plastic scintillators for six delay times (mean times range from 0.55 to 60.0 s) following fast fission of 235U.
Laboratory and address

Washington University, Department of Chemistry, St. Louis, MO 63130 U.S.A.

Names

A.C. Wahl, T. Semkow, L. Robinson

Facilities

Cyclotron and 14-MeV neutron generator

Experiment

Determination of independent yields for near symmetric fission of 235U by thermal and 14-MeV neutrons and of 238U by 14-MeV neutrons.

Method

Fractional independent or cumulative yields of tin, indium, cadmium, and silver fission products are being determined to learn about nuclear-charge-distribution systematics for near symmetric modes of fission. Rapid (~1 sec), continuous solvent-extraction separations of short-lived fission products from their beta-decaying precursors are being carried out using a SISAK-2 system containing H-10 centrifuges. Relatively long-lived descendants in each phase are purified and measured radiochemically for yield determinations.

Completion date

Measurement should be complete by the end of 1983, and publication is planned for 1984.

Publications

1. T. Semkow and A.C. Wahl, "Extraction of Ag(I), Cd(II), In(III), Sn(II), Sn(IV), Sb(III), and U(VI) from Aqueous Solutions by Ketone Solutions Using Single-Step Batch and Continuous SISAK Methods," J. Radioanalyt. Chem. 79(1), (1983), in press.

Measurement of electron spectra of fission fragments resulting from thermal-neutron fission of ^{235}U and ^{239}Pu

A "disc" facility was used. Around the rim of the organic glass disc were placed targets consisting of ^{235}U and ^{239}Pu. The disc was rotated at 13 rpm. The neutron source (^{252}Cf) was placed on one side of the axis in a paraffin block, the electron spectrometer on the other side with a protective shield of lead and polyethylene positioned between them. The spectra of the fissioning isotopes and the background (the empty third of the disc) were measured simultaneously.

Ratios between the electron spectra from the fission fragments of ^{235}U and ^{239}Pu were obtained to an accuracy of $\sim 5\%$. The following absolute spectra were established:

<table>
<thead>
<tr>
<th>E (MeV)</th>
<th>$N_e(E)$ ($\times 10^4$)</th>
<th>$N_{\gamma}(E)$ ($\times 10^2$)</th>
<th>$N_e(E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1.32 (0)</td>
<td>1.65 (0)</td>
<td>1.14</td>
</tr>
<tr>
<td>2</td>
<td>9.11(-1)</td>
<td>1.28 (0)</td>
<td>7.70(-1)</td>
</tr>
<tr>
<td>3</td>
<td>4.41(-1)</td>
<td>6.66(-1)</td>
<td>3.42(-1)</td>
</tr>
<tr>
<td>4</td>
<td>1.83(-1)</td>
<td>3.15(-1)</td>
<td>1.26(-1)</td>
</tr>
<tr>
<td>5</td>
<td>6.72(-2)</td>
<td>1.23(-1)</td>
<td>4.04(-2)</td>
</tr>
<tr>
<td>6</td>
<td>2.23(-2)</td>
<td>4.46(-2)</td>
<td>1.22(-2)</td>
</tr>
<tr>
<td>7</td>
<td>5.62(-3)</td>
<td>1.27(-2)</td>
<td>2.86(-3)</td>
</tr>
</tbody>
</table>

Note: The values of N are given per MeV interval; the order is given in brackets. E is the kinetic energy of the electron. The following accuracies were obtained: 2-4 MeV $\pm 5\%$, 6 MeV $\pm 10\%$, 7 MeV $\pm 12\%$.

The spectra obtained in the present experiment were harder than those obtained by Schrekenbacl et al., Phys. Lett. 99 B (1981) 251.

Laboratory and address: Lensoviet Institute of Technology Leningrad 198013, USSR

Names: M.YA.Kondrat'ko, A.V.Mosesov, K.A.Petrzhak, O.A.Teodorovich

Facilities: Ge(Li) γ-ray spectrometer, 4\textit{IP} 3-counters

Experiments: Measurements of product yields for the fission of Np-237 induced by 28 MeV bremsstrahlung

Method: Targets containing thin layers of Np-237 and Al catchers were irradiated with linac bremsstrahlung. Radioactive nuclides were determined by means of γ-ray spectrometry of unseparated products in catcherfoils and/or radiochemical separation with subsequent γ-ray spectrometry and 4\textit{IP} 3-counting. Absolute cumulative yields were determined by normalization of mass distribution to a total yield of 200%.

Accuracy: The accuracy achieved for absolute cumulative yields is within 3-9\%, mean 4.4\%(1\sigma) for peak products and within 5-15\%, mean 8\%(1\sigma) for low yield products. The accuracy of fractional independent yields is within 9-25\%.

Results:

<table>
<thead>
<tr>
<th>Fission product</th>
<th>Cumulative yield,</th>
<th>Fission product</th>
<th>Cumulative yield,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kr- 85m</td>
<td>1.15\pm.11</td>
<td>Zr- 95</td>
<td>5.26\pm.15</td>
</tr>
<tr>
<td>Kr- 88</td>
<td>2.20\pm.24</td>
<td>Zr- 97</td>
<td>5.54\pm.16</td>
</tr>
<tr>
<td>Sr- 91</td>
<td>4.02\pm.21</td>
<td>Mo- 99</td>
<td>5.90\pm.23</td>
</tr>
<tr>
<td>Sr- 92</td>
<td>4.24\pm.20</td>
<td>Ru-103</td>
<td>4.39\pm.17</td>
</tr>
<tr>
<td>Y - 93</td>
<td>4.59\pm.21</td>
<td>Rh-105</td>
<td>2.66\pm.12</td>
</tr>
</tbody>
</table>

(continued)
Results: Fission product (continued)

<table>
<thead>
<tr>
<th>Fission product</th>
<th>Cumulative yield, %</th>
<th>Fission product</th>
<th>Cumulative yield, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru-106</td>
<td>2.56 ± .23</td>
<td>Cs-136</td>
<td>5.38 ± .021</td>
</tr>
<tr>
<td>Ag-111</td>
<td>.665 ± .040</td>
<td>La-140</td>
<td>4.87 ± .14</td>
</tr>
<tr>
<td>Ag-112</td>
<td>.575 ± .033</td>
<td>Ce-141</td>
<td>4.59 ± .26</td>
</tr>
<tr>
<td>Cd-115</td>
<td>.460 ± .028</td>
<td>Ce-143</td>
<td>3.73 ± .13</td>
</tr>
<tr>
<td>Cd-117m</td>
<td>.124 ± .007</td>
<td>Ce-144</td>
<td>3.31 ± .19</td>
</tr>
<tr>
<td>Cd-117g</td>
<td>.277 ± .021</td>
<td>Pr-145</td>
<td>2.87 ± .17</td>
</tr>
<tr>
<td>Sb-127</td>
<td>1.49 ± .06</td>
<td>Nd-147</td>
<td>1.864 ± .059</td>
</tr>
<tr>
<td>Sb-129</td>
<td>1.97 ± .12</td>
<td>Prm-149</td>
<td>1.496 ± .096</td>
</tr>
<tr>
<td>I-131</td>
<td>4.53 ± .14</td>
<td>Pm-151</td>
<td>.722 ± .045</td>
</tr>
<tr>
<td>I-132m</td>
<td>.20 ± .13</td>
<td>Sm-153</td>
<td>.380 ± .022</td>
</tr>
<tr>
<td>I-132g</td>
<td>4.66 ± .12</td>
<td>Sm-156</td>
<td>.115 ± .013</td>
</tr>
<tr>
<td>I-133</td>
<td>5.49 ± .20</td>
<td>Eu-157</td>
<td>.068 ± .010</td>
</tr>
<tr>
<td>Xe-135</td>
<td>6.28 ± .18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fission product fractional independent yield

I-132(m+g)	.183 ± .032
Xe-135	.249 ± .025
Cs-136	.085 ± .008
La-140	.016 ± .004

Laboratory and address: Moskovskij Inzhenerno-Fizicheskij Inst. (Moscow Institute of Engineering and Physics – MIFI), Moscow, 115409 USSR

Names: A.N. Gudkov, V.V. Kazantsev, V.V. Kovalenko, A.B. Koldobskij, V.M. Kolobashkin, A.I. Slyusarenko

Facilities: IRT research reactor: pneumatic transport system, calibrated coaxial Ge(Li)-detector.

Experiment: Measurement of cumulative yields of the short-lived (T½ = 7.1 – 54 s) products resulting from thermal-neutron-induced fission of 233U.

Method: Semiconductor gamma-spectrometry of the irradiated sample in a cyclical regime without prior chemical separation.

Other information: Cumulative yield values were obtained for eight short-lived fission products.

Accuracy (mean): ~ 10%

Publications: A.N. Gudkov, V.V. Kazantsev, V.V. Kovalenko, A.B. Koldobskij, V.M. Kolobashkin, A.I. Slyusarenko, "Fission product yields from thermal-neutron 233U fission measured by a γ-spectrometric method in a cyclical regime".

Voprosy Atomnoj Nauki i Tekhniki (Questions of Atomic Science and Technology) 42 3 (1981) 49.
Laboratory and address: Moskovskij Inzhenerno-Fizicheskij Inst.,
Moscow, 115409 USSR

Names: A.G. Golovanov, A.N. Gudkov, V.V. Kazantsev,
V.V. Kovalenko, A.B. Koldobskij, V.M. Kolobashkin,
S.I. Lifanov, A.I. Slyusarenko

Facilities: IRT research reactor; pneumatic transport system;
calibrated coaxial Ge(Li)-detector.

Experiment: Measurement of cumulative yields of short-
lived (T½ = 7.1 - 48 s) fission products from
plutonium-239 thermal-neutron fission.

Method: Semiconductor gamma-spectrometry of the
irradiated sample in a cyclical regime without
prior chemical separation.

Sources of information: M.E. Meek, B.F. Rider, Compilation of Fission

Other information: Cumulative yield values were obtained for eight
short-lived fission products.

Accuracy (mean): ~ 18%

Discrepancies compared with published data: The results agree with published theoretical
data to within the error limits.

Publications: A.G. Golovanov, A.N. Gudkov, V.V. Kazantsev,
V.V. Kovalenko, A.B. Koldobskij, V.M. Kolobashkin,
S.I. Lifanov, A.I. Slyusarenko, Determination
of cumulative yields of short-lived fission
products from thermal-neutron fission of 239Pu by
a gamma-spectrometric method in a cyclical regime.
Atomic Energy 53 (Feb. 1983) 576.)
USSR

Laboratory and address: Moskovskij Inzhenerno-Fizicheskij Inst., Moscow, 115409 USSR.

Names: A.N. Gudkov, V.M. Zhivun, V.V. Kovalenko, A.B. Koldobskij, V.M. Kolobashkin, V.N. Kosyakov, S.V. Krivasheev

Facilities: MIFI IRT research reactor; calibrated coaxial Ge(Li)-detector.

Experiment: Absolute measurements of independent and cumulative fission product yields from californium-249 in thermal-neutron-induced fission.

Method: Semiconductor gamma-spectrometry of the irradiated sample without prior chemical separation; measurements at successive time intervals.

Other information: Values were obtained for 32 cumulative and 7 independent yields.

Accuracy (mean): ~ 8% for the cumulative and ~ 12% for the independent yields.

Discrepancies compared with published data: Within the experimental error range quoted the values obtained in the present study diverge from previously published results of radiochemical measurements for the cumulative yields of 92Sr, 97Zr, 112Pd, 127Sb, 132Te and 143Ce.

USSR

Laboratory and address: Moskovskij Inzhenerno-Fizicheskij Inst.
Moscow, 115409 USSR.

Names: A.N. Gudkov, V.V. Kazantsev, V.V. Kovalenko,
A.B. Koldobskij, V.M. Kolobashkin, A.I. Slyusarenko.

System: IRT research reactor; pneumatic transport system, calibrated coaxial Ge(Li)-detector.

Experiment: Measurements of absolute quantum yields from the gamma-radiation of short-lived ($T_1 < 1$ min) fission products.

Method: Semiconductor gamma-spectrometry of the irradiated sample in a cyclical regime without chemical separation.

Information sources:
1. A.N. Gudkov, V.V. Kazantsev, V.V. Kovalenko, et al., Measurement of short-lived fission products resulting from thermal-neutron fission of U^{233} by a gamma-spectrometric method in a cyclical regime, Voprosy Atomnoj Nauki i Tekhniki, Ser. Yadernye Konstanty 42 3 (1981) 49.

Other information: Values were obtained for 13 absolute quantum yields, 5 of them for the first time.

Accuracy (mean): ~ 10%

Published data: The results obtained in the present study do not agree, within the experimental error limits quoted, with those published earlier for the quantum yields of the following γ-lines:
- 775.2 keV 88Br,
- 469.2 keV 99Zr,
- 504.3 keV 100Zr,
- 174.92 keV 139Xe,
- 218.59 keV 139Xe,
- 211.5 keV 143Ba.

Publications: A.N. Gudkov, V.V. Kazantsev, V.V. Kovalenko,
A.B. Koldobskij, V.M. Kolobashkin, A.I. Slyusarenko,
Determination of absolute quantum yields from the γ-radiation of short-lived fission products by a γ-spectrometric method in a cyclical regime, Voprosy Atomnoj Nauki i Tekhniki, Ser. Yadernye Konstanty, 42 3 (1981) 47

*) 88Br, 90Kr, 99Zr, 100Zr, 99,101Nb, 102Te, 139,140Xe, 143,144Ba, 144,147La.
II. COMPILATIONS AND EVALUATIONS

Unchanged contributions are marked as such.

Updates: revisions with respect to the last issue are marked by a vertical bar on the left margin of the text.

New contributions show no marks.
Laboratory and address: Nuclear Physics Laboratory
Proeftuinstraat 42
B-9000 Gent, Belgium

Names: P. De Gelder, D. De Frenne, E. Jacobs

Evaluation: Nuclear Data Sheets for \(A = 102, 110 \) and 105.

Purpose: To give a critical survey of all available information concerning \(A = 102, 110 \) and 105 nuclei, and derivation of consistent best or preferred values with their uncertainties.

Method: cfr. Nuclear Data Project

Major sources of information: Recent References of NDP

Deadline of literature coverage: 102: March 1982
110: October 1982

Computer file of evaluated data: ENSDF

Completion date: 102: March 1982
110: December 1982
105: probably end of 1983

Publications:
Laboratory and address: Département de Recherche Fondamentale
Laboratoire de Chimie Physique Nucléaire
Centre d'Etudes Nucléaires de Grenoble
85 X - 38041 GRENOBLE CEDEX - France.

Name: J. BLACHOT

Cooperation: C. FICHE*, for developing the file and J.C. NIMAL*;
B. DUCHEMIN*, for the applications in summation calculation.

Compilation and Evaluation: Radionuclide decay data:
- to provide a comprehensive data bank of radioactive decay data with:
 half lives, Q-values, branching ratios, nuclear and spectra \(\alpha, \beta, \gamma\) energies and intensities with associated uncertainties.

Purpose: - Decay data file for summation calculation of decay heat (Pepin code).
- Data bank for all people using decay data parameters.

Sources: ENSDF file mostly and new recent works on short lived F.P. not yet evaluated in ENSDF.

Computer file and programs:
- EDIBIB, TRIGAL, ISOTAB Programs
- Magnetic tape available on line for those using the French CISI Network.
- Off line from the NEA Data bank (Saclay).

Publication:
- Annales de Physique Vol 68 (1981)
- Int. Conf. on Nuclear Data for Science and Technology, Anwerp, Belgium, 6-10 Sept. 1982; proceedings page 249.
Laboratory and address: Laboratoire de Métrologie des Rayonnements Ionisants
C.E.N. de Saclay
B.P. No. 2, F-91190 Gif sur Yvette

Names: F. Lagoutine, N. Coursol, J. Legrand

Evaluation: Radionuclide decay data

Purpose: Preparation of a document providing recommended values of the principle decay scheme parameters; half-life, energies and intensities of various radiations emitted (e.g. β, γ, c.e., X-rays)

Method:
- critical analysis of published results
- determination of mean values and associated uncertainties

Source of information: Nuclear Data Sheets, INIS-Atomindex, other recent publications

Publications: Table de radionucléides, edition CEA-LMRI, containing among other radionuclides, the following fission products:

- Vol. 1: Kr-85, Mo-99, Tc-99, Ru-103 + Rh-103m, Sb-125 + Te-125m, Xe-133, Xe-133m, Ce-144 + Pr-144 (revised publication 1982)

- Vol. 2: Rb-86, Rb-88, Sr-89, Sr-90 + Y-90, Y-91
 Ru-106 + Rh-106, Te-127m + Te-127, I-129, Te-131m + Te-131, Xe-131m, Ba-140 + La-140, Pr-143
 Zr-95 + Nb-95, 95m, I-131, Cs-137 + Ba-137m
 Ce-141 (revised publication by the end of 1983)

 second part: Kr-88, Te-129m, Nd-147, Sn-151, Pu-238, Cm-244 (publication by the end of 1983)
 in preparation: Th-228 + chain of daughters
Laboratory and address: Zentralinstitut für Kernforschung

Name: H.-C. Lehner, E. Franke

Evaluation: Effective resonance integral of 133Cs in reactor fuel elements

Purpose: To clear differences between experimental and calculated fission product concentrations of 134Cs observed in investigations of burnt fuel elements

Method 1: Calculation of effective resonance integral of 133Cs taking into account shielding by 238U resonances and self-shielding using Breit-Wigner formalism with Doppler broadening

Major sources of information: BNL-325, 3rd. ed. 1973

Status: Completed

Publication: Radiochem. Radioanal. Letters 42 (1980) 77

Method 2: Calculation of the effective resonance integral of 133Cs with the cell-code PEACO-II

Major sources of information:
- Y. Ishiguro, PEACO-II, JAERI-5527 (1974)
- BNL-325, 3rd. ed., 1973 for 133Cs data
- JAERI-1255 (1978) for 238U data

Status: under work

Publication: in plan
GERMANY, FED. REP.

Laboratory and address: Inst. for Nuclear Chemistry
Philipps-University Marburg
Hans-Meerwein-Straße
D-3550 Marburg

Names: U. Reus and W. Westmeier

Compilation: Gamma-Ray Catalog

Type of data: Compilation of energies and intensities of gamma-rays originating from the radioactive decay of nuclides, as well as other important decay properties of these nuclides.

Arrangement: Part I is a listing of ca. 32,000 gamma-rays ordered by increasing energy with the corresponding nuclei and other information needed for identification purposes.
Part II is ordered by nuclides (A,Z) and contains the complete data sets for 2526 nuclides and isomers (i.e. more than 47,000 gamma- and X-rays), decay data, references, comments etc.

Purpose: Identification of gamma-rays, data for cross-section calculations, activity determination, activation analysis etc.

Major sources of information: Nuclear Data Sheets and almost all important journals in nuclear physics and chemistry.

Deadline of literature coverage: All information received before June 30, 1982, has been included.

Other details: Intensities are given as gamma-rays (or X-rays) per 100 decays where possible to allow the determination of absolute quantities. K-X-ray intensities have been calculated where no experimental data were available.

Current status: Revision of the data has been completed. By changing the printing format, the size of the catalog has been reduced to 400 pages to meet publication requirements.

Publication: The catalog is scheduled to appear in Atomic Data and Nuclear Data Tables, Volume 29, which is to be issued in the second half of 1983.

§ Work performed with the support of GSI (Gesellschaft für Schwerionenforschung mbH, D-6100 Darmstadt).
Evaluation: In the TACO experiment described previously integral neutron cross-sections of selected actinides and fission product nuclides were determined. The total neutron flux was measured and the neutron spectrum as a function of axial position in the irradiation pins was known. Differential cross-sections for the isotopes concerned were taken from the KEDAK library. From the flux and differential cross-sections the integral (n,γ), fission, and in some cases (n, 2n), cross-sections have been calculated. The experimentally determined and the calculated values are compared.

Publication: International Conference on Nuclear Data, 6-10 Sept 1982, Antwerp, Belgium; proceedings page 175.
Department of Physics, Panjab University, Chandigarh -160014 (INDIA)

D. R. Saroha, R. Arumougame, R. K. Gupta

Charge distribution yields in the spontaneous fission of ^{236}U and ^{252}Cf nuclei.

To predict the charge distribution of fission fragments of the naturally fissioning nucleus by using Fragmentation theory and two-centre shell model.

An analytical solution of the time-dependent Schrödinger equation leads to an explicit expression for charge distribution yields as a Gaussian function which gives the most probable charge and the width of distribution. The hypothesis of unchanged charge distribution and minimum potential energy are included as limiting cases.

(ii) Charge distribution yields of light mass products ($A = 97-104$) in the spontaneous fission of ^{236}U are obtained by solving a stationary Schrödinger equation numerically. The width of distribution and the most probable charge are also calculated.

Journals and reports.

1981.

Comparison of theoretical results with the experimental data for the charge distribution yields in ^{236}U and ^{252}Cf nuclei is shown to be good and the most probable charge is comparable with that of potential energy hypothesis.

Strong odd-even charge effects are obtained in the charge distribution yields of light mass products ($A = 97-104$) of ^{236}U which are in good agreement with experiments.

Results for light mass products charge distributions are submitted for publication.
ITALY

Laboratory and address: ENEA, Laboratorio Dati Nucleari e Codici, Via Mazzini 2 - 40138 Bologna, Italy.

Work in Progress and Methods:

i) Model calculations of \(\sigma_{n,\gamma} \), \(\sigma_{n,n} \), \(\sigma_{n,el,\gamma} \) and \(\sigma_{n,\gamma,\text{tot}} \) for the following isotopes: (76-78-79-80)Se, (79-81)Br, (78-79-80-81-82-83-84)Kr in the energy range 1 KeV-1 MeV, (128-129-130-131-132-134)Xe in the energy range 1 KeV-200 KeV and (147-148-149-150-151)Sm and (147-148)Pm in the range 1 KeV-100 KeV. Isomeric ratios calculations for \(^{79}\)Se. Works to be published.

ii) Model calculations of \(\sigma_{n,\gamma} \), \(\sigma_{n,\text{tot}} \) in the energy range 1 KeV-4 MeV for \(^{93}\)Nb, \(^{103}\)Rh, \(^{183}\)Ta, \(^{197}\)Au. Total \(\gamma \) ray spectra calculated, isomeric ratios for \(\sigma_{n,\gamma} \) given for Nb, Rh and Ta average \(\gamma \) ray multiplicity given. Work published on N.S.E. 80, 630(1982).

iii) New evaluations of Pd-105 and -107, as maximum priority nuclei for fast reactors, were completed and group constants in CARNAVAL scheme were produced. Work published as ENEA report RTE/FIMA(82)4.

iv) A critical intercomparison was performed on recent evaluations of Gd isotopes, with main care to the data for thermal reactor purposes. Work documented on ENEA report TIB/FICS(82)7.

Purpose: Evaluation of reliable FP data, mainly capture cross sections, for estimating of long term reactivity effects in fast reactors.

Major sources of information: EXFOR, CINDA up to 82 supplement, Nuclear Data Sheets.

Deadline of literature coverage: December 1982.

Status: see above text.

Cooperation: CEA-Cadarache, KfK Karlsruhe and ECN-Petten.
Japanese Nuclear Data Committee, Decay Heat Evaluation Working Group

Secretariat address:
Japan Atomic Energy Research Institute
Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan

Names:
R. Nakasima (Hosei University) M. Yamada (Waseda University)
T. Tamai (Kyoto University) M. Akiyama (University of Tokyo)
I. Otake (Fuji Electric Co., Ltd.) A. Zukeran (Hitachi Ltd.)
S. Iijima, T. Murata, T. Yoshida (Nippon Atomic Industry Group Co.)
T. Hojuyama (FBR Engineering Co.)
K. Umezawa, K. Tasaka, Z. Matumoto, T. Tamura, H. Ihara, J. Katakura
(JAERI)

1. Compilation: Decay data and delayed neutron data

 Purpose: Revision of a FP decay data library completed in 1981 for summation calculation of decay heat

 Major Sources of Information: Journals, Nuclear Data Sheets, and ENSDF

 Expected Completion Data: Continuous compilation

2. Evaluation: (1) Evaluation of raw decay data by comparing calculated decay heat curves with available measurements

 (2) Deduction of analytical fitting equations

 Purpose: (1) Update JNDC FP Decay and Yield Data Library

 (2) Preparation of simple analytical function for the easy application of the present result of decay power calculation

 Major Source of Information: Own compiled data

 Status: (1) Satisfactory agreement was obtained between calculated decay heat and measured data of 235U, 239Pu, and 241Pu from ORNL, 235U and 239Pu from LANL and 235U from Univ. of Tokyo.

 (2) Calculated results have been fitted to an analytical function with 31 exponential terms for thermal neutron fission of 235U, 239Pu, 241Pu, 233U, fast neutron fission of 235U, 238U, 239Pu, 232Th, and 14 MeV neutron fission of 235U, 238U.

 Computer File of Evaluated Data: JNDC Nuclear Data Library of Fission Products

 Discrepancies encountered: Some discrepancies still remain at cooling-times around 3000 second.

 Availability of Nuclear Data: Contact Dr. Z. Matumoto,
 Nuclear Data Center,
 Japan Atomic Energy Research Institute,
 Tokai-mura, Ibaraki-ken 319-11, Japan

 T. Yoshida, JAERI-M (in preparation)

 K. Tasaka et al., JAERI report (in preparation)
Laboratory and address: Japanese Nuclear Data Committee/FPND W.G.,
Japan Atomic Energy Research Institute,
Tokai-mura, Naka-gun, Ibaraki, Japan

Name: S. Iijima, M. Kawai (group leader) (i), S. Igarashi
Y. Kikuchi, Y. Nakajima, H. Nishimura (ii)
H. Matsunobu (iii), T. Aoki (iv), A. Zukeran (v),
T. Watanabe (vi), M. Sasaki (vii), T. Nishigori (viii)

Evaluation: (1) Neutron cross sections of about 80 FP nuclides
(Z=35 to 64), for JENDL-2 FP Library.
(2) Integral test of JENDL FP library.

Purpose: Fast breeder reactor and thermal reactor calculation.

Method: (1) Calculation with spherical optical model and
statistical theory. Single and multi-level BW formula
in thermal and resonance regions. Optical model
parameters are determined by SPRT method. Level
density parameters are re-evaluated, deriving
systematics of parameters.

(2) Calculation using JAERI-FAST type 70-group cross
sections with resonance self-shielding factors, and
the neutron spectrum data from STEK and CFRMF data.

Major sources of information: EXFOR Library, CINDA, BNL-325 and recent literature.
Integral data from STEK, CFRMF and EBR-II.

Status: (1) Re-evaluation for about 80 FP nuclides.
Optical model parameters were re-determined in
element-wise way for Rb-Gd. Level density parameters
were determined for about 130 nuclides based on level
spacing data, level scheme data, and the systematics.
Compilation and evaluation of resonance parameters are
in progress.

(2) Analysis of STEK reactivity data for weak
absorbers was completed. Revised calculation of CFRMF
activation rates is planned using ENDF/B-5 spectrum field.
(3) FP data library for thermal reaction application
was prepared, and the fission product model was
investigated for LWR calculation.

Other relevant details: File preparation for storing the re-evaluated data
are in progress. Cross section adjustment based on
integral data will start soon.

(i) Nippon Atomic Industry Group Co., Ltd. (ii) JAERI (iii) Sumitomo Atomic
Energy Industries, Ltd. (iv) Fuji Electric Co. (v) Hitachi Ltd.
(vi) Kawasaki Heavy Industries (vii) Mitsubishi Atomic Power Industries, Ltd.
(viii) Osaka University
Computer file JENDL (ENDF/B-IV Format).

Expected completion date : End of 1983

Publications :

Laboratory and address: Netherlands Energy Research Foundation (ECN) P.O. Box 1, 1755 ZG Petten, The Netherlands. Telephone: (02246)-6262, telex: 57211 reacp nl.

Evaluation: (1) RCN-2 and RCN-3 evaluations of neutron cross sections for fission-product nuclides and natural elements in the fission-product mass range [1-3]. The RCN-3 evaluation is a revised version of the published RCN-2 evaluation (see previous newsletters). The capture cross section has been adjusted to fit integral STEK and CFRMF data. The format of the library is that of KEDAK.

(2) 'Pseudo fission-product group cross sections in 26-group ABBN format [4]. Fast breeder power-reactor data needs.

Method: Calculation with multilevel Breit-Wigner formula, optical model and statistical model, taking into account all available experimental information. Adjustment of point-wise given capture cross sections to integral data (STEK+CFRMF); see Refs. [1-3].

Major sources of information: BNL-325, EXFOR, CINDA, Nuclear Data Sheets, recent literature, integral data from STEK and CFRMF.

Status: (1) RCN-3 evaluation completed for: Nb-93, natural Mo, Tc-99, Rh-103, Pd-102, Pd-104, Pd-105, Pd-106, Pd-107, Pd-108, Pd-110, Ag-107, Ag-109, natural Ag, I-127, I-129, Cs-133, La-139, Pr-141, Nd-142, Nd-143, Nd-144, Nd-145, Nd-146, Nd-147, Nd-148, Nd-150, natural Nd, Pm-147, Sm-148, Sm-149, Sm-150, Sm-151, Sm-152, Sm-154, natural Sm.

(2) Completed: Pseudo fission-product cross sections [4], based upon adjusted RCN-2A data, supplemented with ENDF/B-IV data and charged-particle emission cross sections [5]; comparison with ENDF/B-V data [3].

Completion date: 1985

Recent publications:

Gruppelaar, H. and B.P.J. van den Bos, The contribution of (n,p) and (n,α) reactions to fission-product capture cross sections, ibid, p. 285; extended report: ECN-78 (1979).
Laboratory: Netherlands Energy Research Foundation ECN, Postbus 1, 1755 ZG Petten, The Netherlands.

Compilation: Selected fission yields and fission product decay data for reactor neutron metrology application.

Purpose: Creation of a common data set for all laboratories working in the field of reactor neutron metrology. The guide was prepared on behalf of the Euratom Working Group on Reactor Dosimetry.

Major sources of information:
- Data supplied by the computer program MEDLIST from the Evaluated Nuclear Structure Data File (ENSDF);
- Data supplied by the Physikalisch Technische Bundesanstalt, Braunschweig.

Deadline of literature coverage: Spring 1979. A revision is planned.

Cooperation: Members of Euratom Working Group on Reactor Dosimetry.

Other relevant details: Fission yields and decay data and decay schemes are given for the following fission products: ^{95}Zr, ^{97}Zr, ^{103}Ru, ^{131}I, ^{132}Te, ^{137}Cs and ^{146}Ba. The fissionable isotopes considered are: ^{235}U, ^{238}U, ^{239}Pu, ^{237}Np.

Computer file: Not present.

Completion date: August 1979. For planned revision: fall 1983.

UNITED KINGDOM
(same as INDC(NDS)-130)

Laboratory and Address: AERE Harwell
UKAEA
AERE, Harwell,
Oxfordshire, Ox11 ORA

Name: E.A.C. Crouch (now retired)

Compilation: Chain, Cumulative and Independent fission product yields for all neutron induced fission reactions with neutrons of energy up to 14 MeV, including spontaneous fission. Ongoing compilation.

Purpose: Basic data for fission yield evaluation.

Sources: Journals, Proceedings of Learned Societies, or other open literature, Project reports if the work is complete but unlikely to be published.

Deadline: No results prior to 1950 are collected.

Cooperation: We are prepared to exchange files with other groups.

Computer File: Information held in standard forms on Computer Files.

Completion Date: Continuous compilation.

Publications: AERE R6642 'A library of neutron induced fission product yields maintained and interrogated by computer methods'.
'Part I: The establishment of the library'.

AERE R7207 'A library of neutron induced fission product yields maintained and interrogated by computer methods'.
'Part II: The interrogation of the library'.
E.A.C. Crouch, August 1972.

Fission Product Yields from Neutron-Induced Fission -
E.A.C. Crouch.
Atomic Data and Nuclear Data Tables, Vol. 19, 5,
May, 1977.
Contains experimental values and adjusted values after fitting to conservation laws.
1. Evaluation

(1) Neutron induced fission product yields for all fissile nuclides at neutron energies up to 15 MeV; chain yields and independent yields.

(2) Adjustments of the chain yields and the calculated independent yields to force agreement with the conservation laws i.e. to form a 'consistent set'.

Purpose: UKND File to be used in Reactor design and operation.

Method:

(1) The individual yields for a given reaction (both chain and independent), are examined, weighted and the means calculated together with the errors.

(2) The evaluated yields are augmented by interpolation to fill missing values or in the case of independent yields by calculation based on parameters estimated from known values. The results are fitted by least squares to the conservation conditions to give adjustments for chain yields and independent yields.

Complete - the fitting of conservation laws and the equality of yields of complementary elements. The set will be tested for its ability to produce an estimate of after heat from 239Pu Fission nearer to experimental values than previous sets.

Sources: Compilation mentioned above.

Deadline: No results prior to 1950 are collected. Compilations believed to be complete up to end 1975, some 1976 results included.

Cooperation: We are prepared to exchange files with other groups.
UNITED KINGDOM
(cont'd, same as INDC(NDS)-130)

Computer Files of Compiled Data: Compilation as above.

Computer File of Evaluated data: Magnetic tape or punched cards of the consistent set in ENDF/BIV format.

Discrepancies found: Files are compared with those of B.F. Rider and discrepancies found are resolved.

2. Evaluation: Compilation and evaluation of the half lives of delayed neutron emitter precursors and emission probabilities of the delayed neutron emitters. Hence, using the fission product consistent sets, calculation of the delayed neutron yields ... Proceeding.

Purpose: UK Nuclear Data File for use in Reactor design and operation calculations.

Sources: The open literature

Deadline: Continuous compilation.

Status: Compilation of delayed neutron data proceeding.

Cooperation: We are prepared to exchange information with other groups.

Computer files: Not yet implemented.
UNITED KINGDOM

Laboratory and Address: CEBG Berkeley Nuclear Laboratories, Berkeley, Gloucestershire GL13 9FB

Working Group: A. Tobias CEBG, BNL
A.L. Nichols AEER, Winfrith
M.F. James, AEER, Winfrith
H.E. Sims, AEER, Harwell
K.M. Glover, AEER, Harwell
V. Barnes, BNFL, Windscale
D.G. Vallis, AWRE, Aldermaston

Compilation and Evaluation: Radionuclide Decay Data

Purpose: To provide a comprehensive, up-to-date data library of radioactive decay data including half-lives, Q-values, branching ratios, α, β and γ energies and intensities and associated uncertainties.

Progress:

a) Activation Products

i) The activation product decay data library UKPADD-1, originally in ENDF/B-IV format, is also now available in ENDF/B-V format.

ii) Work has begun on a revised activation product decay data library UKPADD-2 which will eventually contain data for over 400 nuclides. Evaluations for 60 nuclides have been completed so far and will be processed via the code COGEND to ENDF/B-V format.

b) Fission Products

i) The spectral data given for 390 nuclides in UKFPDD-2 have been extracted to provide an additional data base for the inventory/decay heat code FISP6, enabling the calculation of detailed radiation spectra emitted by irradiated fuel.

ii) Data for ~300 fission products, evaluated in 1979/1980 for UKFPDD-2, have been converted to ENDF/B-V format in preparation for UKFPDD-3.
c) Heavy Elements

The heavy element decay-data library UKHEDD-1 is now complete and includes spontaneous fission data where appropriate. Data are given for 125 nuclides in ENDF/B-V format.

d) Data Retrieval

A retrieval system for spectral data has been developed for use with any ENDF/B-IV or V format decay data libraries - in particular UKPADD-1, UKFPDD-2 and UKHEDD-1. Spectral data can be presented in increasing energy order or by nuclide and with a variety of editing options.

Publications:

ii) "Radioactive Heavy Element Decay Data for Reactor Calculations" by A.L. Nichols and M.F. James, UKAEA Report AEEW-R1407.

iii) "A Retrieval System for Spectral Data from ENDF/B Format Decay Data Files" by A. Tobias, CEGB Report RD/B/5170N81.
UNITED KINGDOM
(same as INDC(NDS)-130)

Laboratory and address: Birmingham Radiation Centre
University of Birmingham
P.O. Box 363
Birmingham B15 2TT
United Kingdom

Name: D.R. Weaver

Evaluation: Equilibrium and near-equilibrium delayed neutron spectra

Purpose: For reactor physics calculations and analysis of delayed neutron yield measurements. The evaluation was recommended by the March 1979 Vienna Consultants' Meeting on Delayed Neutron Properties

Method: Calculation of a full covariance matrix for the spectra

Deadline of literature coverage: None. Raw experimental data from laboratories who used either 3He or proton recoil counters has been obtained. Further data would be welcomed

Status: A method of obtaining a full covariance matrix has been derived based upon the sensitivity of the spectra obtained from unfolding to changes in the calibration parameters of the detector and counting statistics. A paper describing the technique and measurement of an Am/Li spectrum using a 3He counter has been published.
U.S.A.
(same as INDC(NDS)-130)

Laboratory and address:
Hanford Engineering Development Laboratory
P.O.Box 1970
Richland, WA 99352

Names:
RE Schenter, FM Mann, DL Johnson, and F Schmittroth

Evaluation:
ENDF/B-V, Mods to ENDF/B-V, and ENDF/B-VI Fission Product Data File and Fission Yield Files

A. Coordinate generation and testing of complete ENDF/B-FP files which will contain cross sections, decay data and fission yields for approximately 900 fission product nuclei and 20 fissionable nuclei. Coordination is part of the responsibility as Chairman of CSEWG (Cross Section Evaluation Working Group) Fission Product and Actinide Data Subcommittee. Two subcommittees related and contributing to this subcommittee are chaired by TR England (LASL) and CW Reich (INEL) and cover the areas of fission yields and experimental decay data, respectively. Evaluations to these files will be contributed by essentially all CSEWG member laboratories.

B. Evaluate important FP cross sections for fast and thermal reactor application. These will mainly involve updating about 180 cross section evaluations from ENDF/B-V with emphasis on capture. Use will be made of combining recent integral and differential data results from CFRMF, STEK, RPI and ORNL.

C. Evaluate delayed neutron spectra using summation method from individual precursors in cooperation with TR England (LASL) and CW Reich (INEL). Precursors without experimental spectra will be predicted using the computer code BETA.

D. Evaluate decay data parameters E_β, E_γ for "theoretical" ("no line data") FP nuclides using BETA code, extrapolated "fits" to known data, and integral results of recent decay heat measurements.

E. Analyze fission yield experimental results from FFTF.

Purpose:
Update ENDF/B Fission Product Data Files

Completion dates:
ENDF/B-V file was issued May 1980. ENDF/B-V Fission Yield Files issued April/May 1979. Mods to ENDF/B-V expected to be released Sep. 1982 and May 1983.
References:

Results for delayed neutron spectra will be reported at the Internat. Conf. on Nuclear Data for Science and Technol., Antwerp, 6-10 Sep. 1982.

Other references related to this work may be obtained from R. E. Schenter.

For further information see also LANL contribution.
Laboratory and address: Idaho National Engineering Laboratory
EG&G Idaho, Inc.
P.O. Box 1625
Idaho Falls, Idaho 83415 USA

Names: C. W. Reich, R. L. Bunting

Compilation: Decay data for fission products. Quantities treated include: T½; Qβ; branching fractions for the various decay modes; energies and intensities of all emitted radiations (e.g., β, γ, c.e., x-ray); K-, L- and total ICC; delayed-neutron energy spectra for individual precursors; uncertainties in all measured values.

Purpose: Decay data file for ENDF/B.

Major sources of information: Nuclear Data Sheets, Table of Isotopes (7th Ed.), recently published papers, preprints of recent work.

Deadline of literature coverage: Ongoing. For Version V of ENDF/B, cut-off date is approximately September, 1978.

Computer File: Decay data are included in ENDF/B Fission Product File. Tapes available through normal ENDF/B procedures. Evaluated decay data sets for 318 fission-product nuclides (and isomeric states) have been prepared for inclusion in the ENDF/B-V Fission-Product File.

Publications:

LABORATORY AND ADDRESS:

University of California
Los Alamos National Laboratory
PO Box 1663
Los Alamos, New Mexico 87545 (USA)

NAMES:

T. R. England (LANL)
B. F. Rider (Retired)
R. E. Schenter (HEDL)

COMPILATION:

Library of evaluated fission product yields for ENDF/B-VI files (preliminary).

DEADLINE OF LITERATURE COVERAGE

Mid-1983

COORDINATION

Subcommittee consisting of members from major USA commercial and government laboratories.

RELEVANT DETAILS

The new files are updated and extended to include 50 yield sets for 34 fissioning nuclides at one or more fission energies. Data are not yet in ENDF/B-V format and are now being updated at Los Alamos prior to further distribution and use in ENDF/B-VI.

PUBLICATIONS

Editor's note: The contributions from LANL enclosed in the present issue do not reflect the full range of compilations and evaluations performed for the ENDF/B library, as several contributions on work already completed were not resubmitted (see also issue no. 8, INDC(NDS)-130, for completeness). A complete reorganized documentation of this work will appear in next year's issue.
A summary of the fission-product and actinide data contained in ENDF/B-V data files is presented in Ref. 1. All fission products (877) and actinides (60) in Rev. "0" are included. Appendices contain some additional augmentation of these data along with a presentation of probable data changes, errors, or existing revisions to date. Schematics of all coupled fission products and augmented actinides (144 total actinides) are included. Mass chain yields, decay parameters (half-lives, branchings, beta, gamma, and alpha energies), processed one-group cross sections for fast reactor spectra, four-group cross sections for thermal reactors, and the resonance integrals and 2200 m/s cross sections are included, as well as other information pertinent to the ENDF/B-V files. We have prepared this document to serve as a relatively concise source for the most frequently requested data and as a convenient reference for the fission-product and actinide data contained in ENDF/B-V.

REFERENCE:

Aggregate delayed neutrons and spectra have been computed and compared with evaluations in Ref. 1. One-hundred and five precursors were used. The intent of this and continued theoretical work for unmeasured spectra and re-evaluation of Pn values is to use summation calculations to improve and extend ENDF/B-VI delayed neutron evaluations. Results are given for each of the conventional six-time groups and for 11 fissionable nuclides at one or more neutron fission energies. [Pn values of Ref. 2 are being reevaluated (see the contribution prepared at HEDL).]

REFERENCES:

1. Name: J. K. Dickens

Compilation and Evaluation: Data file of fission-product radioactive β-decay information including energies, E_β, and absolute branching ratios, A_β, and degree of forbiddenness for 353 fission products, augmented by average β-ray energies for 183 additional fission products.

Purpose: To compute gross fission-product β-ray spectra obtained, e.g., following fission of ^{235}U so as to determine the associated "reactor antineutrino" spectrum to be used in experimental measurements of antineutrino-induced reactions.

Major sources of Information: Nuclear Data Sheets, Table of Isotopes (7th Edition), and recent published literature.

Deadline: January 1982 for the current compilation.

Status: Data file is available from the ORNL Radiation Shielding Information Center.

2. Name: J. K. Dickens and P. T. Perdue

Compilation: Data file of radioactive γ-decay information including energies and absolute intensities when available, or relative intensities when absolute values are not available.

Purpose: Identification of responsible radionuclides for data reduction of high-resolution Ge(Li) spectroscopy.

Major Sources: Nuclear Data Sheets and Table of Isotopes (7th Edition).

Deadline: Continuing.
Status: Three data files contain data for 774 radionuclides between 7Be and 254Es. About 65% of the 3200 entries are up to date (February 1983). The remainder are being upgraded on a continuous basis. The primary file is ordered by increasing Z and A; the file contains information useful for neutron activation analysis (NAA). There is a secondary file consisting of all γ rays ordered by increasing γ-ray energy; for each entry a second γ ray is included if available. There is an additional secondary file of the 774 radionuclides ordered by increasing half life; no γ-decay information is in this file. These data files are available from the ORNL Radiation Shielding Information Center.

U.S.A.

(same as INDC(NDS)-130)

<table>
<thead>
<tr>
<th>Laboratory and address</th>
<th>Washington University, Dept. of Chemistry, St. Louis, MO., USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A. C. Wahl</td>
</tr>
<tr>
<td>Compilation and evaluation</td>
<td>Independent yields and other data related to nuclear-charge distribution in fission are compiled and evaluated for low-energy fission reactions (excitation energies up to (\sim)20 MeV). The current compilation includes data for thermal-neutron-induced fission of (^{233}\text{U}), (^{235}\text{U}), and (^{239}\text{Pu}) and for spontaneous fission of (^{252}\text{Cf}). Data for other fission reactions are to be added.</td>
</tr>
<tr>
<td>Purpose</td>
<td>Systematic trends in independent yields (IN) are derived from the data by use of models, which allow reasonable estimates to be made of independent yields for all fission products and increase knowledge of fission-reaction mechanisms.</td>
</tr>
<tr>
<td>Sources of information</td>
<td>Journals, reports, preprints, other compilations, and personal communications</td>
</tr>
<tr>
<td>Method</td>
<td>Original values of experimental data and uncertainties are maintained in a file, and average values are calculated and normalized for each A, when sufficient data exist, so that the sum of fractional independent yields (FI) is unity. The set of FI values for each fission-reaction, or IN values derived from them, are treated by the method of least squares to derive systematic trends in the yields described by the (Z_p) and (A'_p) models. Experimental yield data are evaluated by comparison with other data, with average yield values, and with yields calculated from the models.</td>
</tr>
<tr>
<td>Cooperation</td>
<td>We are prepared to exchange files with other groups.</td>
</tr>
<tr>
<td>Computer file</td>
<td>Information is held in standard forms on computer files.</td>
</tr>
<tr>
<td>Completions</td>
<td>Compilation is continuous.</td>
</tr>
</tbody>
</table>
Laboratory and address: Fiziko-Energeticheskij Institut, Obninsk, and Institut Atomnoi Energi, J.Y Kurchatova, Plochad I.V. Kurchatova, 46, Moscow, 123182 USSR

Names: Abagyan L.P., Zakharova S.M., Yudkevich M.S.

Evaluation: Capture cross sections for Pm isotopes.

Purpose: Production of the 21,80 and 26-group capture cross section fission product library for thermal, epithermal and fast reactor calculations.

Method: Re-evaluation of resonance parameters and average resonance parameters, thermal and epithermal neutron cross sections and capture resonance integrals. Calculation of capture cross sections using the recommended parameters in thermal and resonance region. Review of available evaluations in the unresolved resonance region to choose the best of them for Pm isotopes.

Major sources of information: Original papers on experimental data and available evaluations.

Publication:

USSR

Laboratory and address: Moskovskij Inzhenerno-Fizicheskij Inst.
Moscow, 115409 USSR

Evaluation: Mass yields of fission products.

Purpose: Prediction of the mass distributions of fission-fragment nuclides resulting from the fission (by neutrons of arbitrary energy) of heavy nuclei for which mass distributions are known experimentally for two or more fissioning neutron energies.

Method: The "five Gaussian" method was used, the reference parameters being determined by the method of least squares.

Results: Recommended parameter values were obtained for calculating the mass distributions for 233U, 235U and 238U resulting from fission by neutrons of arbitrary energy.

Discrepancies compared with published data: The calculation formulae and values for most of the parameters differ widely from those recommended in the following:

III. RECENT PUBLICATIONS RELATED TO FPND

The publications listed below refer to activities related to FPND which are not covered by the contributions contained in this issue. They are sorted according to:

1. Fission yields and charge distribution
2. Neutron reaction cross sections
3. Decay data
4. Delayed neutron data
5. FP decay heat
6. Reviews and summaries

Completeness of this section has not been attempted. For papers presented at meetings see section IV.

III.1. Fission yields and charge distribution

(For fission yields of delayed neutron precursors see also "delayed neutrons")

Fission Yields of In Isotopes in the Thermal Neutron Fission of 235U

M. Shmid, G. Engler
Z. Phys. A 311 (1983) 113

(including: T1/2 of 124-131In)

The absolute determination of cumulative yields of several nuclides from fission of 235U induced by neutrons of spontaneous fission of 252Cf

Institute of Atomic Energy
He Huaxue Yu Fangshe Huaxue (=J. Nucl. a Radiochem.,
Beijing) Vol. 4 (Feb. 1982) 44

(in Chinese with English abstract)

Comparison of the Spontaneous Fission of 244Cm and 252Cf
(1). Fragment masses and kinetic energies

R. Schmidt, H. Henschel
III.2. Neutron reaction cross sections

Measurement of the total neutron cross-section of selenium at neutron energies below 2 eV

M. Salama
Atomkernenergie - Kerntechnik 42 (1983) 187

Neutron-capture resonances for \(^{82}\text{Se}\)

J.C. Browne, B.L. Berman

In Situ Neutron Activation Analysis of and the Neutron Capture Cross-Section for \(^{90}\text{Sr}\)

L.A. McVey, R.L. Brodzinski, T.M. Tanner
J. Radioanal. Chem. 76 (1983) 131
(discrepancy to old accepted value !)

Spectroscopy of \(^{100}\text{Ru}\) and \(^{102}\text{Ru}\) by resonance neutron capture

C. Coceva, P. Giacobbe

Measurement of the neutron total cross sections of \(^{109}\text{Ag}\) and \(^{110}\text{Mg}\)

V.A. Anufriev, S.I. Babich, V.N. Nefedov
At. Energ.(USSR) 53 (1982) 29

Interaction of neutrons with even-A tin isotopes.
I. total cross sections for \(E_n = 0.3\text{-}5.0\text{ MeV}\)

R.W. Harper, T.W. Godfrey, J.L. Weil

III.3. Decay data

(for delayed neutron precursor decay data see also "delayed neutrons")

The Decay of \(^{76}\text{As}\)

Weng Peikun, Liu Fengying, Yuan Guanjun, Li Shenggang, Lu Xfane, Cheng Shiping
(in Chinese with English abstract)
Calorimetric Redetermination of the Half-life of ^{90}Sr

H. Ramthun

Evidence for a Rotational Band in ^{99}Y

E. Monnand, J.A. Pinston, F. Schussler, B. Pfeiffer, H. Lawin, G. Battistuzzi, K. Shizuma, K. Sistemich

Praezisionsbestimmung der Halbwertzeit des Nuklides ^{99m}Tc im Pertechnetat-Ion mittels eines Variationsverfahrens

K.P. Dostal
Isotopenpraxis 18 (1982) 201

(T1/2)

The Beta Decay of ^{104}Nb and the Level Scheme of ^{104}Mo

B.D. Kern, K. Sistemich, W.D. Lauppe, H. Lawin

Precision Measurement of gamma-ray Energies in the Range 450-600 keV

H. Kumahora, H. Inoue, Y. Yoshizawa
(including: ^{106}Ru, ^{147}Nd)

Calibration of High-purity Germanium Detectors in the Energy Range from 25 to 122 keV

K. Debertin, W. Pessara
(147; including low energy gammas or X-rays of: ^{108}mAg, ^{131}I, ^{137}Cs, ^{152}Eu)

The gamma-gamma angular correlation studies in ^{132}Xe

S.S. Sooch, R. Kaur, N. Singh, P.N. Trehan

Population of ^{133}I from the beta decay of fission product ^{133}Te and the cluster-vibration model

H.G. Hicks, J.H. Landrum, E.A. Henry, R.A. Meyer
S. Brandt, V. Paar
Shell model description of N = 81 five-exciton 135Xe and the decay of 135I

W.B. Walters, S.M. Lane, N.L. Smith, R.J. Nagle, R.A. Meyer

(135I: T1/2, Eγ, Iγ)

The radioactive decay of Isobars with A = 140

I. Adam et. al.

The decay of 144Ce

Yu Banshui, Liu Fengying, Lu Xiane, Li Shenggang, Yang Chunxiang

Opposing properties of particle-hole and intruder-hole bands in N=87 nuclei and 149Sm levels populated by 149Pm(e- and 149Eu(EC)

R.A. Meyer, J.W.T. Meadows, E.S. Macias

(Eγ, Iγ)

The Radioactive Decay of 152Eu

H.A. Ismail, H. Hanafi, M. Morsy, A. Nada, H. Abu-Leila

The decay of 160Tb

M.L. Hasiza, K. Singh, H.S. Sahota
Indian J. Phys. 56A (1982) 221
IV. MEETINGS

Internat. Conf. on Nuclear Data for Science and Technology
Antwerp, Belgium, 6-10 Sept. 1982

Editor: K.H. Boeckhoff (CBNM Geel)

page selected papers:

9 238U, issues resolved and unresolved
 G. DeSaussure, A.B. Smith
 (review; including total delayed-neutron yields)

85 Convergence of integral and differential cross-section data for structural materials
 (including: Zr, Nb, Mo, Sn)

98 The integral check of neutron cross section data for reactor structural materials by measurement and analysis of neutron spectra
 I. Kimura, S.A. Hayashi, K. Kobayashi, S. Yamamoto
 (including: Nb, Mo)

143 Total cross section measurements of thermal and 24 keV neutrons for crystalline materials
 O. Aizama, T. Matsumoto, H. Kadotani
 (including: Zr, Nb)

147 Search for gas producing reactions in thermal reactors
 P. D'hondt, C. Wagemans, E. Allaert, A. DeClercq, A. Emsallem, R. Brissot
 (including: (n,a) cross sections for 95,97Mo, 101Ru, 105Pd, 113Cd, 115Sn; see also contribution on page 8)

152 Gamma-rays from capture of 400-keV neutrons
 N. Yamamuro, H. Kitazawa, M. Igashira, T. Maruyama, K. Hashimoto
The TACO experiment for the determination of integral neutron cross-sections in a fast reactor

A. Cricchio, R. Ernstberger, L. Koch, R. Wellum

(see also contribution on page 49)

Reactor Irradiations of ^{242}Pu, comparison of measured and calculated yields of ^{244}Pu, ^{243}Am and ^{244}Cm, and study of the fission product yields

C. De Raedt, P. De Regge, T. Babeliowsky, E. Wattecamps

Average capture cross section of the fission product nuclei $^{104,105,106,108,110}\text{Pd}$

E. Cornelis, C. Bastian, G. Rohr, R. Shelley, T. van der Veen, G. Vanpraet

(see also contribution on page 15)

Neutron radiative capture and transmission measurements of ^{107}Ag and ^{109}Ag

M. Mizumoto, M. Sugimoto, Y. Nakajima, M. Ohkubo, Y. Furuta, Y. Kawarasaki

(see also contributions on pages 69, 70)

Capture cross section, energy dependence of total cross section of ^{152}Eu isomer with $T_1/2=9.3$ h for thermal neutrons

V.A. Pshenichniy, V.P. Vertebnyi, E.A. Gritzay

Mesures par activation d'isotopes séparés de produits de fission dans des spectres de réacteurs à neutrons rapides

L. Martin Deidier, M. Darrouzet

(including $^{98,100}\text{Mo}$, $^{102,104}\text{Ru}$, ^{108}Pd, ^{139}La, ^{141}Pr, ^{142}Ce, $^{146,148,150}\text{Nd}$, ^{152}Sm)

Measurements of fission-product decay heat for fast reactors

Masatsugu Akiyama and Shigehiro An

(see also contribution on page 77)

A brief survey of experimental and theoretical data on fission product decay heat from U-235 and Pu-239

M.F. James

Calculs de puissance résiduelle à l'aide de la bibliothèque CEA de données radioactives et du code PEPIN

B. Duchemin, J. Blachot, B. Nimal, J.C. Nimal, J.P. Veillaut

(see also contribution on page 128)
High resolution measurements of delayed neutron emission spectra from fission products

(see also contribution on page 101)

Delayed neutron spectral measurements and covariance error analysis for fast fission in 235U and 239Pu

J. Walker, D.R. Weaver, J.G. Owen

(see also contribution on page 95)

Integral measurements of delayed neutron average energies for 235U

S. Synetos

Compilation of neutron precursor data

F.M. Mann, M. Schreiber, R.E. Schenter, T.R. England

(see also contributions on pages 147,152)

The UK Chemical Nuclear Data Libraries: evaluated nuclear decay data for reactor applications

B.S.J. Davies, A. Tobias, M.F. James, A.L. Nichols, E.A.C. Crouch

(see also contributions on pages 141-145)

Computer interpretation, analysis and evaluation of a nuclear decay schemes

G. Evangelides

(computer programs for use in decay heat or shielding calculations, sensitivity studies, etc.)

Decay scheme data for 239U, 154Eu and 140Ba/140La

S.P. Holloway, J.B. Olomo, T.D. Mac Mahon, B.W. Hooton

Measurement of double differential neutron emission cross sections with 14 MeV source for D, Li, Be, C, O, Al, Cr, Fe, Ni, Mo, Cu, Nb, and Pb

Measurement and evaluation of (n,t) cross sections

Z.T. Body, F. Cserpak, J. Csikai, S. Sudar, K. Mihaly

(including: 93Nb)
Precise measurement of cross sections for the reactions $^{90}\text{Zr}(n,2n)^{89}\text{Zr}$ and $^{58}\text{Ni}(n,2n)^{57}\text{Ni}$ from threshold to 20 MeV

G. Winkler, A. Pavlik, H. Vonach, A. Paulsen, H. Liskien

A measurement of the cross sections for the reactions $^{90}\text{Zr}(n,2n)^{88}\text{Zr}$, $^{93}\text{Nb}(n,2n)^{92}\text{Nb}$, $^{63}\text{Cu}(n,2n)^{62}\text{Cu}$ and $^{27}\text{Al}(n,\alpha)^{24}\text{Na}$ by $^{27}\text{Al}(n,p)^{27}\text{Mg}$ for the purpose of neutron spectrometry around 14 MeV

A. Chiadli, A. Ait Haddou, M. Viennot, G. Paic

Measurement of cross sections for the $(n,2n)$ reaction of ^{55}Mn, ^{58}Ni, ^{59}Co, ^{93}Nb, ^{181}Ta and ^{197}Au

Lu Hanlin, Huang Jianzhou, Fan Peiguo, Cui Yunfeng, Zhao Wenrong

Study of excitation functions around 14 MeV neutron energy

J. Csikai

(cross section between 13.5 and 14.7 MeV including: $(n,2n)$ for ^{90}Zr, ^{93}Nb, ^{113}In, (n,α) for $^{94,96}\text{Zr}$, (n,n') for $^{113,115}\text{In}$, and $^{92}\text{Zr}(n,d)$)

Measurement of average cross section for ^{252}Cf neutrons

Z. Dezso, J. Csikai

(including: $^{93}\text{Nb}(n,\alpha)$, $^{113}\text{In}(n,n')$)

Measurement of some average cross sections for ^{252}Cf neutrons

H. Benabdallah, G. Paic, J. Csikai

(including: (n,x) for ^{86}Sr, ^{115}In, $^{134,138}\text{Ba}$, (n,n') for ^{87}Sr, ^{111}Cd, $^{113,115}\text{In}$, ^{138}Ba)

Integral reaction rate measurements in ^{252}Cf and ^{235}U fission spectra

G.P. Lamaze, E.D. McGarry, F.J. Schima

(including $^{115}\text{In}(n,n')$)

Measurement and evaluation of integral data in the Cf-252 neutron field

W. Mannhart

(including $^{90}\text{Zr}(n,2n)$)

Fission fragment angular distribution data for neutron induced fission of ^{235}U

S.S. Kapoor, K.N. Iyengar, D.M. Nadkarni, V.S. Ramamurthy
Calculation and processing of continuum particle-emission spectra and angular distributions

H. Gruppelaar, C. Costa, D. Nierop, J.M. Akkermans

A model for angular distributions in preequilibrium reactions

S.K. Gupta, A. Chatterjee

Role of preequilibrium emission on (n,xn) cross sections

Population of delayed neutron granddaughter states and the optical potential

R.E. Schenter, F.M. Mann, R.A. Warner, P.L. Reeder

Inelastic scattering cross sections in the energy range 2.0 to 4.5 MeV calculated with different formalisms for level width fluctuation corrections

E. Ramstroem

Further study of several physical effects on the calculation of angular distribution based on exciton model

Sun Ziyang, Wang Shunuan, Zhang Jingshang, Zhuo Yizhong

Present status and benchmark tests of JENDL-2

Yasuyuki Kikuchi and members of JNDC

Systematic of average total radiative widths for s- and p-wave resonances

Zhuang Youxiong, Wang Shunuan, Zhou Delin, Jia Zhize
Remark on the ENDF/B-V evaluations of the neutron capture cross sections in the region around 10 MeV neutron energy

F. Cvelbar, R. Martinicic, A. Likor
(including: 89Y, 140Ce)

Analysis and evaluation of thermal and resonance neutron activation data

S.M. Jefferies, T.D. Mac Mahon, J.G. Williams, A. Ahmed
(including 115In)

Nuclear fission: from saddle to scission

J.P. Theobald

(a review fragment mass distributions)

Energy and mass distributions for 241Pu(n,th,f), 242Pu (s.f.) and 244Pu(s.f.)-fragments

E. Allaert, C. Wagemans, C. Wegener-Penning, A.J. Deruytter, R. Barth

(see also contribution on page 10)

Fission fragment angular distributions and total kinetic energies for 235U(n,f) from 0.18 to 8.83 MeV

J.W. Meadows, C. Budtz-Jorgensen

Isotopic distributions and element yields in the photofission of 235U and 238U with 12-, 15-, 20- and 30-MeV bremsstrahlung

D. De Frenne, H. Thierens, B. Proot, E. Jacobs, P. De Gelder, A. De Clercq

(see also contribution on page 7)

Radiation widths of iodine, cesium and iridium neutron resonances

A.B. Popov, K. Trzeciak, Zo In Ok

Mesure de la section efficace de capture radiative du lanthane, du bismuth, du cuivre naturel et de ses isotopes pour des neutrons d'énergie comprise entre 0,5 et 3 MeV

J. Voignier, S. Joly, G. Grenier

Resonance enhancement of parity violation effects in neutron-nuclear interaction

(including: 81Br, 111Cd, 117Sn, 127I, 139La)
Differential neutron scattering cross sections and average neutron parameters of tin isotopes

V.G. Nikolenko, A.B. Popov, G.S. Samosvat

IBA Description of collective states in neodymium isotopes

G. Maino, E. Menapace, A. Ventura

The measurement of short-lived radionuclides using a cyclic activation system

C.A. Adesanmi, N.M. Spyrou

(short lived fission products)

On neutron capture cross section measurements with the activation technique in the MeV region

P. Andersson, R. Zorro, I. Bergqvist,

(115In(n,γ)116mIn, see also contribution page 85)

Measurement of reaction cross-section ratios of some neutron reactions using gamma and x-ray spectrometry

A. Reggoug, G. Paic, A. Chiadli

(113,115In(n,2n) at 14.7 MeV)

Nuclear data activities in China

Zhou Delin

(including FPND; review)

The European-Japanese joint programme on neutron data evaluation

C.G. Campbell, C. Nordborg

(including many fission products)

Evaluation et mesure de données nucleaires, programme et perspectives

N. Coursol, F. Lagoutine
Announcement of a

Specialists' Meeting on

"Yields and Decay Data of Fission Product Nuclides"

to be held at Berkner Hall, Brookhaven National Laboratory, Upton, N.Y.

24th - 27th October 1983

1. Organisation

This specialists' meeting will be held at Brookhaven National Laboratory (BNL), U.S., from Monday, 24th October to Thursday, 27th October, 1983. The meeting is sponsored by the NEA Nuclear Data Committee (NEANDC) and the U.S. Department of Energy (DOE), and its scientific programme has been established by a programme committee under the chairmanship of Dr. R.E. Chrien of BNL. The scientific secretary will be Dr. T.W. Burrows of the National Nuclear Data Centre.

2. Programme of the meeting

The plan for the meeting is to have eighteen review talks scheduled over three and a half days. The last half day (Thursday afternoon) of the meeting will be devoted to a round table discussion and a conference summary. The round table will be composed of four delegates from each of four separate workshops on the main areas of fission yields, delayed neutron applications, decay heat and microscopic data for modelling. These workshops, to which all registrants are expected to contribute, will meet in two evening sessions, Monday and Wednesday, to prepare overall assessments on the status of, and need for, nuclear data in the different areas. The conclusions are to be provided verbally in the round table discussion.

The detailed programme of review papers is given in Annex 1. Fifty minutes each have been allowed for these talks, plus ten minutes discussion. Participants are invited to submit titles and a very brief abstract for poster presentations: three one-hour periods have been set aside for discussion of posters, and the posters will be on display throughout the meeting. The posters, which replace individual presentation of shorter contributed papers, are an important feature of the meeting, and it is expected that new results of importance will be presented in this way.

3. Participation

Participation in the meeting is restricted to scientists nominated, in the case of OECD Member countries, by national representatives on NEANDC. The International Atomic Energy Agency (IAEA) was invited to submit nominations for a limited number of participants from non-OECD countries, and scientists from such countries wishing to attend the meeting should contact IAEA through their appropriate national channels.
A total attendance of between 70 and 100 persons is expected. The closing data for accepting nominations will be the 15th September 1983.

A registration fee of $80 U.S. will be charged, and should be paid on registration at the meeting. This fee will include the cost of the buffet and conference banquet, and conference proceedings.

5. **Languages**

 The working language of the meeting will be English.

6. **Papers and Posters for the Proceedings**

 Three copies of each review paper are needed for preparing the proceedings: one original typed on the composing sheets sent to authors from BNL (6 1/2 x 8 1/2 inches = 16.5 x 21.6 cms. page frame for reproduction full size in the proceedings), and at least two clear and legible copies. Two-page extended summaries of posters should be prepared in the same way for inclusion in the proceedings. Authors may bring their photo-ready text to the meeting, or send it sufficiently in advance to Dr. T. Burrows at the National Nuclear Data Center, BNL.

7. **Registration and Lodging**

 After nomination of national representatives on NEANDC, or through IAEA, participants should return their completed Participant Registration Forms (two copies: one each to Dr. T. Burrows, BNL, and Dr. C. Nordborg, NEA Data Bank) and the Participants Lodging and Local Transport form to Dr. T. Burrows.

 A package will be sent to authors and participants containing:

 - Information about access to BNL and a map of the laboratory site,
 - Instructions to authors, and
 - Composing sheets (form 2303) where a paper or a poster has been submitted.

8. **Detailed Provisional Programme**

 All review talks are 50 minutes plus 10 minutes discussion.

 AM sessions: 09.00 - 12.30
 PM sessions: 14.00 - 17.30

 Sunday, 23 October

 Preregistration and Buffet: Brookhaven Center 17.00 - 21.00
Monday, 24 October

AM 1. Independent Fission Yield Measurements
 H.O. Denschlag (Mainz)

AM 2. Status of Fission Yield Measurements
 T. England (Los Alamos)

3. Poster Discussion: "Yields"

PM 4. Systematics of Neutron-induced Fission Yields
 J.P. Blachot (Grenoble)

PM 5. Correlation of Fast Reactor Fission Yield with Neutron Energy
 W.J. Maec (Idaho)

PM 6. Fission Yield Data for Dosimetry
 A.J. Fudge (Harwell)

Evening: Workshops

Tuesday, 25th October

AM 7. Theories of Beta Strength Distribution in Nuclei
 K. Takahashi (Darmstadt)

AM 8. Measuring Beta-ray Strength Functions
 K.L. Kratz (Mainz)

AM 9. Poster Discussion: "Spectroscopy"

PM 10. Problems in Decay Heat Measurement and Evaluation
 M.F. James (Winfrith)

PM 11. Microscopic Beta and Gamma Data for Decay Heat Needs
 J.K. Dickens (ORNL)

PM 12. Decay Heat Data Needs
 T. Yoshida (Japan)

Evening: Buffet, Brookhaven Center
Workshops

Wednesday, 26th October

AM 13. Delayed Neutron Emission Probabilities
 P. Reeder (Pacific NW)

 R. Greenwood (Idaho)

AM 15. Poster Discussion: "Delayed Neutrons"
AM 16. Calculating Delayed Neutron Spectra
 F. Mann (Hanford)

PM 17. Analytical Applications for Delayed Neutrons
 G. Eccleston (Los Alamos)

PM 18. Prompt Fission Neutron Spectra and Average Prompt Neutron
 Multiplicities
 D. Madland (Los Alamos)

19.00 Reception and Banquet, Berkner Hall

Thursday, 27th October

AM 19. Nuclear Masses far from Stability
 D. Brenner (Clark University)

AM 20. Applications for Fission Product Data to Problems in Stellar
 Nucleosynthesis
 G.J. Mathews (Livermore)

AM 21. Spins and Moments of Fission Product Nuclei
 C. Ekstroem (CERN)

PM 22. Workshop Round Table
 a. Fission Yields
 b. Decay Heat
 c. Delayed Neutron Applications
 d. Microscopic Data for Modelling

PM 23. Meeting Summary
 G. Rudstam (Studsvik)