Application of the Microwave Discharge Modification of the Wilzbach Technique for the Tritium Labelling of some Organics of Biological Interest

T. Gosztonyi

This report is intended for publication in a periodical. References may not be published prior to such publication without the consent of the author.

AKTIEBOLAGET ATOMENERGI

STOCKHOLM, SWEDEN 1969
APPLICATION OF THE MICROWAVE DISCHARGE MODIFICATION
OF THE WILZBACH TECHNIQUE FOR THE TRITIUM LABELLING
OF SOME ORGANICS OF BIOLOGICAL INTEREST

T. Gosztonyi
AB Atomenergi, Studsvik, Nyköping, Sweden

The modification of the Wilzbach technique using microwave dis-
charge [1] has been routinely used in our laboratory for rapid tritium
labellings. The applicability of the method and the effects of some of
the reaction parameters were studied and published previously [2].
The main advantage of the method is its simplicity and rapidity and
the low extent of decomposition of the compound to be labelled during
the reaction. Specific activities obtained, however, are not high enough
for some investigations.

In this paper the labelling of dihydrostreptomycine, tetracycline
and antipyrine will be described.

This report is intended for publication in a periodical. References may
not be published prior to such publication without the consent of the
author.

Printed and distributed in January 1969
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPERIMENTAL</td>
<td>3</td>
</tr>
<tr>
<td>Dihydrostreptomycine - 3H</td>
<td>3</td>
</tr>
<tr>
<td>Tetracycline - 3H</td>
<td>4</td>
</tr>
<tr>
<td>Antipyrine - 3H</td>
<td>5</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>6</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>7</td>
</tr>
<tr>
<td>Figures</td>
<td></td>
</tr>
</tbody>
</table>
EXPERIMENTAL

The apparatus used was essentially the same as published earlier [2].

Dihydrostreptomycin - 3H

Dihydrostreptomycin tri-sulfate (102 mg) was placed into the reaction vessel and degassed thoroughly. Tritium gas was then admitted up to a pressure of 3.6 mm Hg, which corresponded to an activity of 380 mCi.

Microwave discharge (180 W) was performed for three minutes. After pumping off the remaining tritium, the product was dissolved in water and precipitated by adding alcohol to the solution. This precipitation was repeated twice more and finally the product was dried in vacuum at room temperature.

Yield: 72 mg (70%)

Specific activity: 85 μCi/mg; 75 mCi/mM

Radiochemical yield based on tritium gas: 1.6%

The radiochemical purity of the product was checked by paper chromatography on Whatman No. 1 paper. The chromatogram was developed by using the ascendent technique in the following solvent system:

- 400 ml n-butanol saturated with water
- 8 g p-toluenesulfonic acid
- 10 ml piperidine
The dihydrostreptomycine was localized as a pink spot by spraying the chromatogram with a reagent obtained by mixing equal volumes of the following solutions:

- 0.1 % diacetyl in water
- 2.5 % α-naphtol in alcohol
- 20 % w/v KOH in water

The radiochromatogram of the labelled dihydrostreptomycine (scanned by using a Packard M7200 scanner) showed a well defined single radioactive peak which corresponded to the dihydrostreptomycine spot obtained by the spray reagent (Fig. 1).

Tetracycline - 3H

The labelling procedure was essentially the same as described above; 100 mg of tetracycline hydrochloride was labelled at a tritium pressure of 3.2 mm Hg (340 mCi). Labile tritium was removed by dissolving the product three times in methanol followed by evaporation to dryness under reduced pressure. The crude product was precipitated from water solution, the pH of which was adjusted to 4.5 by the drop-wise addition of 0.1 N hydrochloric acid, and finally dried in vacuum at 50 °C.

Yield: 86.5 mg (86.5 %)

Specific activity: 165 μCi/mg; 79 mCi/mM

Radiochemical yield based on tritium gas: 4.2 %
The radiochemical purity of the product was checked by thin-layer chromatography on Eastman-Kodak Silicagel-G TLC sheet using 10 % aqueous citric acid solution saturated with n-butanol as developing solvent system. The tetracycline was localized as a yellow spot by spraying the chromatogram with 1N hydrochloric acid followed by heating at 50 °C for a few minutes. The chromatogram is shown on Fig. 2.

Antipyrine - 3H

150 mg of antipyrine was labelled by the procedure described above at a tritium pressure of 3.8 mm Hg (400 mCi). After removing labile tritium by dissolving the product three times in methanol followed by evaporation to dryness under reduced pressure, antipyrine was found to be pure without any further purification.

Yield: 90 mg (60 %)
Melting point: 109 - 110 °C (uncorr.)
Specific activity: 350 µCi/mg; 66 mCi/mM
Radiochemical yield based on tritium gas: 7.1 %

Thin-layer chromatography on Eastman-Kodak Silicagel-G sheet, using methanol as developing solvent and Dragendorff spray reagent to localize antipyrine, showed a single radioactive peak. No decomposition could be observed after keeping the product at room temperature for five months in powder form. (Fig. 3).
ACKNOWLEDGEMENT

The author's thanks are due to Mr. H. Tovedahl for the radio-activity measurements.
REFERENCES

1. WESTERMARK, T., LINDROTH, H. and ENANDER, B.,
 Isotope labelling by means of electrical gaseous discharges.
 Intern. J. Appl. Rad. and Isotopes 7 (1959/60), 331.

2. GOSZTONYI, T. and WALDE, N.,
 Studies on the tritium labelling of some local anaesthetics and
 aminoacids by the microwave discharge modification of the
 Wilzbach technique.
 J. Labelled Comp. 2 (1966), 155.
Legends to the figures

Fig. 1 Radio paper chromatogram of dihydrostreptomycine 3H-trisulfate.
Solvent: 400 ml n-butanol saturated with water.
8 g p-toluenesulfonic acid.
10 ml piperidine.
Paper: Whatman No. 1.

Fig. 2 Radio thin-layer chromatogram of tetracycline 3H-hydrochloride.
Solvent: 10 % aqueous citric acid solution saturated with n-butanol.
Thin layer: Eastman-Kodak Silicagel-G.

Fig. 3 Radio thin-layer chromatogram of antipyrine 3H.
a) immediately after preparation.
b) after five months' storage at room temperature.
Solvent: methanol.
Thin layer: Eastman-Kodak Silicagel-G.
FIG. 3.
LIST OF PUBLISHED AE-REPORTS

EOS-tryckerierna, Stockholm 1969

1. Neutron elastic scattering cross sections of the elements Cu and Cu between 1.5 and 8.8 mev. By B. Höglund and T. Wieland, 1967, 17 p. Sw. cr. 10:-.

2. A study of the energy dependence of the Th232 capture cross section in the energy region 1.6 to 8.4 eV. By G. Lundgren, 1967, 25 p. Sw. cr. 10:-.

5. Linear dynamics model for steam cooled fast power reactors. By H. Volland, 1968, 38 p. Sw. cr. 10:-.

8. Special catalysts for lithium compensated germanium detectors. By A. Lauber, B. Malmsten and B. Rosenmantz, 1968, 14 p. Sw. cr. 10:-.

11. Thermo electric investigations of an electrodynamic generator. By S. Palm, 1968, 36 p. Sw. cr. 10:-.

13. An investigation of an irradiated fuel pin by measurement of the pro-profit fraction of fast neutrons in a thermal column and by pile oscillation technique. By Veite Gustavsson, 1968, 24 p. Sw. cr. 10:-.

15. Thermo electronic contributions to the pheno and dampings in metals. By Rune Jonsson, 1968, 38 p. Sw. cr. 10:-.

16. Calculation of resonant reaction effects using a rational approximation to the symmetric resonance line shape function. By H. Häggblom, 1968, 48 p. Sw. cr. 10:-.

17. Studies of the effect of heavy water in the fast reactor FRO. By L. Törn and R. Häkansson and B. Kjellström, 1968, 26 p. Sw. cr. 10:-.

24. Neutron elastic scattering cross sections of iron and zinc in the energy region 2.3 to 8.1 MeV. By B. Höglund, S. G. Johansson, A. Kiss, G. Löfquist and T. Wieland, 1968, 10 p. Sw. cr. 10:-.

26. Phase diagrams of some sodium and potassium salts in light and heavy water. By K. E. Holmberg, 1968, 48 p. Sw. cr. 10:-.

29. Neutron friction factors in rough rod bundles estimated from experiments in particular rough annuli - effects of distortitudes in the shear stress and turbulence distributions. By B. Kjellström, 1968, 22 p. Sw. cr. 10:-.

30. Friction factors in rough rod bundles estimated from experiments in particular rough annuli - effects of distortitudes in the shear stress and turbulence distributions. By B. Kjellström, 1968, 22 p. Sw. cr. 10:-.

31. List of published AE-reports (In Swedish)