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Abstract: The low-frequency magnetic field in the vicinity of 
a twisted three-conductor arrangement carrying balanced 
three-phase current is studied by analytical methods. Formulas 
are derived for the field vector as function of observation 
point location, with pitch and radius of the helix as 
parameters. Exact analytical expressions are given for the field 
as function of time as well as for the effective value of the 
field components and the total field in form of Bessel-function 
series. The field vector is expressed in helical coordinates. 
Approximations for the field far away from the arrangement 
are given. Verifying measurements have been performed on a 
rig. 

INTRODUCTION 

Twisting of pair-wire lines in telephone cables is known to be 
an effective way to suppress inductive crosstalk among the 
lines. This method utilizes two effects of twisting: Immunity 
of any line to the fields from the other lines, and minimization 
of the field emitted by each of the lines, It is the latter effect 
which will be the object of the paper. Another application of 
twist is to reduce stray fields from power leads in e.g. space 
probes and aeroplanes. As a utility, our interest in the field 
reduction option offered is caused by the controversial 
question of magnetic fields and human health. Potential power 
industry applications would be generator and substation 
busbars, though twisted transmission lines seem impracticable. 
The method is directly applicable on cables, of course. Three- 
phase current is predominantly used in the power industry 
which means that the three-phase, three-wire line will 
correspond to the one-phase, pair-wire line in 
communications. 

The object of the paper is to present a theory of the compound 
magnetic field from three infinitely long and helically shaped 
current filaments carrying balanced three-phase current. 
Excepting [2-41 of these authors, only one paper [l] treating 
the three-phase case has been found in the literature and just a 
few treating the one-phase case [5-91. Our main reference will 
be H. Buchholz [5,6] who did the pioneering work as early as 
1937. The main vehicle will be his expression for the field 
from a single helix. The field of the one- and three-phase 
arrangements are then obtained by superposition. The 
contribution of the later research lies mainly in producing 
simple engineering approximations, either by direct ways or 
by using first-term approximations to series expansions in 
Bessel functions. Compared to earlier studies, this paper will 
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Figure 1. Helical line current 

use the natural, here called helical, coordinates for the field 
vector by which one component will be eliminated and the 
problem thereby be rendered two-dimensional. This very 
special property of the field was noted already in [5] but was 
missed in many later works. 

THE EXACT THEORY 

Fig. 1 shows the basic one-helic case. Here Z is current, a is 
radius and p is pitch. Cylinder coordinates are used, 
designated by r, Q and z for radial, azimuth angle and axial 
coordinate, respectively. By [5,6] the radial, azimuthal and 
axial field components are 
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Bz =-F(kr)2i;Z;(nka)K,(nkr)cos[n(#-#~ -kz)] 

witi k=z 
P 

Here Z,(x) and K,( x ) are the mbdified Bessel functions of 

first and second kind of order n, and z,: (x) and KA (x) their 
derivatives. The problem has recently been revisited in [lo]. 
Eq. (1) holds for r>a and similar equations apply to the case 
rcu, i.e. inside the cylinder. 

It is observed that, neglecting the single term of B#, we have 

4 = -( kr)B# which simply means that the field component in 

the $z-plane is perpendicular to an imagined helix of pitch p 
through the field point, see Figure 2. Then the field can be 
described by only two components, namely the radial 
component and the so called binormal component Bb, since 
the tangential component Bs is zero. The binormal direction 
b’ is indicated in Fig. 2 along with the tangential direction z , 
which together make the lateral surface coordinates for the 
field. The third direction is the so called normal direction, 
which, but for an opposite sign, agrees with the radial 
direction. We choose to retain the radial component B,. The 
relation between the two reference systems is given by 

B, = B,siny+ Bgcosy 

Bb = B,cosyr- B@nly 

with y = tan-’ (kr) 

(2) 

Here y is the pitch angle of the field-point helix. 

Imagined helix 
Source helix’ 

Figure 2. Field components in helical coordinates 

Now, cancelling the single term of BP by applying an 
imagined return current in the cylinder axis, we can write for 
the time dependent field-vector components 

(3) 

6 = PoiU 
0- 

7Lr2 
q = ka y = kr m==-@o-kz 

where time dependence Z = jsinwt is assumed, with u) 
denoting angular frequency and t time. Here & is introduced 
for briefness in notations. Note that the cylindrical coordinate 
system is retained for the field-point location. 

For the three-phase case of study, we number the wires by 
i=1,2,3 and set 

Ii = isin(cOt+ai) aj = (n-l)? #i = (i-1): (4) 

where ai and @i are phase angles and location parameters of 
the three helices. This means that the conductor arrangement 
in a transverse plane will form an equilateral triangle since the 
three coaxial helices have equal radii. Term-wise addition of 
the three fields yields after some elementary calculations using 
the auxiliary geometric relations 

~sin(wt+oli)sin[n(~-~~ -kz)]=FS~os(mt*n@) (5) 
i=l 

~sin(~t+~~)cos[n(~-~~ -kz)]=Ssin(wknQ) 
i=l 

the following results for the field components 

B, =Sb,rZC(m)Z,(nq)K,(ny)cos(wrJ:n~) 
n 

(6) 

The summations range over n=1,2,4,5,7... i.e. all positive 
integers except n=3,6,9.. . . The upper sign applies for 
n=2,5 ,a.. . and the lower for n=l 4 7 , , *-*, and so the signs for 
the remaining terms will be alternating. 

The effective values of the components and the total field B 
can now be established according to 
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4 =+Boy2 
i 
CC(Tn)(Tm)Z~(n17)Zt,(mrl) 
nm 

B = ; Boy2 
1 

c c nmZ(, (nrl)Z:, (m’)[(T1)(Tl)K:, (w)K:, (w’) 
nm 

+~Kn(ny)Km(my)]cos(inFm)Q 
I 
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witi B, =e 
Figure 3. Approximate vs. exact total magnetic field 

7cr2 l/2 

where the index and sign rules of above apply. Z denotes the B =+ Boy2Z;(q) K;Z(r)+ y K?(Y) 1 (10) 
effective value of the current. 

Formulae (7) can be applied to the special case with an The corresponding expressions for the component fields are 
untwisted configuration by letting IJ and ytend to zero, since p obvious. Still, three rather inaccessible Bessel functions are 
tends to infinity, using the small argument approximations for involved and further simplification is wanted. Using the small 
the Bessel functions. argument approximation Z{(y) = l/2 by (8), and the large 

argument approximations 

rl,y<<l (8) Kl(y)=-K1’(y)= 

gives, from (10) 

The result is B= F+Bo 

(11) 

THE APPROXIMATE THEORY 

l/2 Now, the first-term approximation for the untwisted case is 
(9) from the third equation of (9) just 3 / 4. &B. , which holds for 

distant field points, r>x. Then (12) tells that the field 
reducing effect of twisting a straight arrangement is captured 
by F. F may be called “twist factor”. The epithet is all the 
more justified since F in effect applies individually to both the 

l/2 r- and the b-component. It should moreover be stressed that 
the b-direction will tend to the z-direction for increasing 
distances, while it will constantly be the @-direction in the 
straight case. In the limit, both cases will have a circular 
polarisation for the field vector in the respective planes. 

In certain cases the first terms of the above series expansions 
Figure 3 demonstrates the precision of the approximation (12) 

will be so dominant that they can serve as a good 
for the total field for a sample case with u=O.l m, p= 1 m, and 

approximations for the whole series. One important such case 
Z= 1 A. It appears that the approximation works very well even 

is when the configuration has a loose twist in the meaning that 
when y is not overly large. As a rule of thumb, the error will 

u<<v and the field ooint is distant in the meaning that r>>v. be smaller then 10 % when y > 10 as long as 77 < 0.5 . The 
In such case the total field in (7), for example, red&es to * corresponding curve for the untwisted case is shown in the 
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diagram to demonstrate this precision. 10 % relative precision 
is seen to be achieved at about 0.5 m. 

0.31 J 
-1 -0.5 0 0.5 1 

wkz &ad) 

Figure 4. Convergence of binormal field component 

Figure 4 is showing the convergence of the Bessel series for 
the binormal component of (7) at distance 0.2 m, with varying 
field-point location along the line for the sample case above. It 
is evident that the approximation works very well even this 
close, and it seems to give a good average value of the field 
along the line. 

As an illustration of what field reduction that can be brought 
about by twist we see that for distance to pitch ratios, r/p, 
equal to 1 and 2, the twist factor, F, is equal to 0.037 and 
0.00020, respectively. This shows the extreme fastness in field 
decay with distance. 

VERIFICATIONS 

The correctness of the exact analytical theory was verified in 
two different ways: By comparison with the results of a 
numerical simulation based on Biot-Savart’s law, and by 
comparison with measurements on a laboratory rig. The data 

Measuring table 

Figure 5. Set-up of experiment 

for the demonstration case are a = 0.1 m, p = lm and I = 200 
A. In this presentation we will focus on the experiment, and 
just say that the agreement between the numerical method and 
the analytical one was excellent up to many figures. 

Fig. 5 shows the experiment set-up. Three plastic coated 50 
mm’ stranded Cu-wires were helically wound on a plastic pipe 
and connected in one end and fed by a transformer with 
200A, 50 Hz current in the other end. The length of the pipe 
was 11 m, which was considered enough to be simulating the 
infinite case for distances less than 2 m. Two pitch values 
were tested, 0.5 m and 1.0 m, of which only the latter will be 
reported here. The coil of the probe was mounted on a block 
of wood designed to keep the center of the coil in an 
horizontal plane through the axis of the pipe when measuring 
the three field components in cylindrical coordinates. For each 
distance, the field was measured at six points spaced 0.1 m on 
a centered measuring table, and the average value was 
computed. Conversion of the field components from 
cylindrical into helical coordinates was then performed by use 
of (2) after which the total field was calculated. 

Fig. 6 shows the comparison between the measured and 
calculated total field. The agreement is seen to be excellent for 
distances up to about 1.0 m. The deviations for distances 
above were found to be caused by small accidental offsets of 
the windings during the erection of the rig so that they came to 
deviate from perfect helices. 

I 
0.4 0.5 0.6 0.7 0.X 0.9 1 

distance (m) 

Figure 6. Theoretical vs. measured total magnetic field 

Figure 7 shows the effect of this defect on the tangential 
component of the field. Remember that this field component is 
supposed to be non-existing, but is here present for the whole 
range of distances. The tangential component was in effect of 
comparable size with the radial and binormal components, not 
shown, for distances slightly above 1 m. Also shown in the 
diagram is the calculated untwisted reference case. It is seen 
that, despite of the defects, the field reduction is almost two 
decades for the largest distance shown (1.45 m). 
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Approximate expressions for the field at a distant point are 
established. The essence of twist in reducing the field is found 
to be captured by a certain “twist factor” of simple form, to be 
applied to the untwisted configuration. The precision of the 
approximation is demonstrated on a sample case to be very 
good even for not very large distances. 

The paper revises earlier results appearing in the literature and 
presents new insight into this important problem. Further 
objects of research are identified. 
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