Preliminary Level-1 Probabilistic Risk Assessment of the IRIS Plant

Yuko Mizuno and Hisashi Ninokata
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology,
2-12-1 O-okayama, Meguro-ku, Tokyo, 152-0550, Japan

We have been performing a preliminary Level-1 Internal-event Probabilistic Risk Assessment (PRA) of the IRIS Plant in order to evaluate its core damage frequency. Initiating events, both loss-of-coolant accidents and transients, that would potentially lead to core damage have been considered and categorized into thirteen events in each group in order to cover overall potential events. Event mitigation sequences, actuation of the safety and non-safety systems, following each initiating event have been identified. This preliminary Level 1 PRA will be used to identify key core damage sequences and provide insights for improving plant design features.

KEYWORDS: IRIS, probabilistic risk assessment, passive safety systems

I. Introduction

The IRIS (International Reactor Innovative and Secure) is a pressurized, light water cooled, medium power, (1000MWt) reactor which addresses Generation IV goals for enhanced reliability and safety, improved economics, waste reduction, and proliferation resistance, defined by the US Department of Energy (DOE). IRIS is being developed by an international consortium of commercial companies, laboratories and universities; led by Westinghouse Electric Company, and the program was supported by the US DOE as part of its NERI Program.

The IRIS design utilizes an integral reactor pressure vessel, which contains all the major reactor coolant system components including the pumps, the pressurizer and the steam generators as well as the control rod drive mechanisms. In comparison with current pressurized water reactors, for instance, large loss-of-coolant accidents have been eliminated, since there is no large loop piping connecting the reactor vessel to the steam generators, pumps, and the pressurizer. For most other serious accident scenarios, the likelihood and consequences of these accidents has been reduced by specific IRIS design features. In addition the IRIS safety systems are simplified and use passive safety features for core cooling, boration, and containment cooling to enhance the reliability of post-accident mitigation.

One of objectives in the IRIS project is to define an approach to focused application of risk-informed design and licensing. A probabilistic risk assessment (PRA) has been applied to the quantitative risk evaluation of the IRIS plant in its conceptual and preliminary design phase, while most of the PRA studies performed to date have been performed to evaluate the reliability of existing plant designs or of operating nuclear power plants. Through the overall Level-1 PRA study, we will expect to identify vulnerable components of the plant systems and post-accident sequences that threaten the safety of the plant in order to contribute to design improvements at the early stage in the design. Also the results will be used to optimize the safety system design to assure that the remaining accident sequences do not cause core damage frequencies to exceed acceptable criteria.

The work presented in this paper should only be considered as work in progress, because the design is still being fleshed up and its main purpose is only to show the methodology we adopted. It contains many conservative assumptions, where ad hoc analyses were not yet possible, and it is expected to be revised and refined soon.

II. IRIS Plant Description

From Ref. 1, the IRIS safety and non-safety systems related to post-initiating-event mitigations are briefly described below.

Safety Systems

Fig. 1 shows the IRIS safety systems: the emergency heat removal system, the containment pressure suppression system, the automatic depressurization system, the emergency boration system, and the long-term gravity makeup system. In addition, the reactor protection system which trips the reactor and automatically actuates the safety systems following events is included in the IRIS safety systems.

1. Emergency Heat Removal System (EHRS)

The Emergency Heat Removal System (EHRS) consists of four subsystems. Each subsystem is connected to two steam generators (SG) and consists of a supply line from the SG steam line to an EHRS heat exchanger submerged in the
refueling water storage tank water, a return line from the heat exchanger to the SG feed water line and one SG makeup tank. The EHRS return line contains two parallel returning paths each of which contains a fail-open air-operated valve and a check valve in series.

The EHRS provides the safety grade means of decay heat removal following loss-of-heat sink events and postulated secondary side piping breaks. It also provides the means of core and containment cooling following postulated loss of coolant accidents (LOCAs).

Following a LOCA, the EHRS condenses steam inside the reactor vessel thus retaining primary water inventory, and reducing the reactor vessel (RV) pressure to minimize water loss from the RV. By reducing the RV pressure and mass loss the EHRS helps to limit containment pressure and its continued operation reduces containment pressure.

2. Automatic Depressurization System (ADS)

In addition to the RV depressurization provided by the EHRS, an Automatic Depressurization System (ADS) helps to equalize the pressure between the reactor vessel and containment following a loss of primary coolant event. This stops the blowdown to the containment and maximizes the water inventory in the reactor vessel.

This ADS consist of one 4-inch piping connection from the reactor vessel head to the suppression pool. However, the ADS has two parallel sets of two normally closed motor-operated valves in series. The upstream valve is a normally closed, motor-operated gate valve and the downstream valve is a normally closed, motor-operated globe valve. Only one of the two parallel lines is required to open.

3. Emergency Boration System (EBS)

The Emergency Boration System (EBS) consists of two independent subsystems, each containing an emergency boration tank which can provide borated water to the RV by natural circulation, or by drain down if the RV water level decreases. This borated water provides the diverse means of reactor shutdown in case of the failure of the reactor protection system to trip the reactor. Each EBS discharge line has two parallel sets of normally closed, fail-open, air-operated valve actuation valves.

4. Long-term Gravity Makeup System (LGMS)

The Long-term Gravity Makeup System (LGMS) provides gravity makeup flow paths to the RV to ensure that the RV water level is maintained above the top of the core for an extended period following any postulated LOCA. The LGMS can supply borated water from the containment pressure suppression tank to the reactor pressure vessel when the pressure inside the reactor pressure vessel is equalized with
the containment pressure.

Each LGMS train has three diverse functions. The first flow path goes from the containment pressure suppression tanks to the reactor vessel in order to provide a source of gravity water injection to the reactor pressure vessel when the containment pressure and RV pressure are equal. The piping contains a check valve and a squib valve in series. A second flow path provides a means of injection to the reactor vessel from the reactor cavity, which floods-up following a LOCA. Finally, a third LGMS flow path is also provided that allows the operator to drain water from the suppression tanks directly to the reactor vessel cavity to assure that water can be made available for cooling the external surface of the reactor vessel. The LGMS lines contain diverse isolation valves and each subsystem connects to a separate 2-inch piping connection to the reactor vessel.

5. Containment Pressure Suppression System (CPSS)

The Containment Pressure Suppression System (CPSS) consists of six containment pressure suppression water tanks, and a common suppression pool gas space. Each water tank has an inlet pipe connected to the containment atmosphere and pipe connected to the gas space. The function is to limit the containment pressure by condensing steam inside the containment. The steam goes to the suppression system water tanks through the sparger inside the tank, where it is condensed. Also the CPSS can flood up the reactor vessel cavity using LGMS piping, if required.

Non-Safety Systems

1. Passive Containment Cooling System (PCCS)

The IRIS Passive Containment Cooling System (PCCS) is a non-safety grade system which is diverse from the EHRS. The PCCS can remove sufficient heat directly from the containment steel shell to limit the containment pressure below the design pressure of ∼1.3 MPa, following a LOCA.

2. Other Non-safety Systems

The normally available, non-safety power conversion system can be used to remove core decay heat and cooldown via the steam generators, following transients, wherever these systems are available. The power conversion system includes the main feed water system, the startup feed water system, the main steam system, and the steam dump system.

In addition the IRIS plant design includes a normal residual heat removal system that can directly cool the primary reactor fluid at low pressures, and a makeup system that can provided limited makeup to the reactor vessel and also provides a means of depressurizing the reactor vessel via an auxiliary spray connection to the pressurizer portion of the reactor vessel.

III. Potential Initiating Events

In the very beginning of the study (Ref. 2) we first focused on basic internal initiating events (loss of primary coolant and some transients) that could possibly lead to core damage.

Based on Ref. 3, initiating events (at-power, internal) in the IRIS Plant have been grouped in thirteen different categories. According to these groups, the initiating events have been categorized more precisely into thirteen categories in the following subsections.

1. Loss of Primary Coolant

Fig. 1 shows that the IRIS reactor vessel has piping connections to the safety valves/ADS/CPSS, and the LGMS. The piping connections to the EBTs are combined with the piping connection to/from the chemical and volume control system/normal residual heat removal system. In addition, there are instrumentation piping connections. It must be noted that there are no piping penetration larger than 4 inches in diameter and no penetration at all within 8 meters from the bottom of the reactor pressure vessel (above the core level).

In general, LOCA categories are defined by size of piping and the post-event sequences of each LOCA category are different.

General LOCA

This category includes:

- A break at the EBS/chemical and volume control system/normal residual heat removal system piping at the upper part of the reactor pressure vessel (small LOCA equivalent)
- An inadvertent stuck-open safety/relief valve not at the ADS line (medium LOCA equivalent)
- Instrumentation piping break only at the upper part of the reactor vessel (very small LOCA equivalent)
- Power/cable penetration leakage only at the upper part of the reactor vessel (very small LOCA equivalent)

ADS Line Break

ADS line break is categorized differently from General LOCA, since the ADS is opened by the break. This category includes:

- 4-inch piping break at the ADS line
- An inadvertent stuck-open safety/relief valve at the ADS line
- Two inadvertent safety/relief valves stuck-open

LGMS Line Break

This category is defined as a piping break occurring in one of the LGMS lines (at the lower part of the reactor vessel but above the core, ≤ 2-inches in diameter). This break includes one suppression pool/reactor vessel cavity/EBS injection path.
On the basis of break size, LGMS line break would be

categorized as a small LOCA. However this is different from

general LOCA, since only one LGMS/EBS path to the
reactor vessel is available, and the break is lower in the
reactor vessel.

Steam Generator Tube Rupture
The Steam Generator Tube Rupture (SGTR) event is an

event in which primary coolant system inventory bypasses
the barrier between the reactor coolant system and the
secondary side of the SGs. Since reactor coolant inventory is
lost, this event is also a loss of primary coolant event. The
SGTR event includes rupture of one or more steam generator
(SG) tubes or a break of a SG inlet/outlet channel head.

The IRIS steam generator tube rupture (SGTR) is expected
to be different from that of conventional PWRs, because IRIS
has once-through helical-coil SGs inside the reactor vessel.
The primary water is outside of the SG tubes while the
feedwater and steam are inside the SG tubes (in a
conventional PWR the primary water is inside the tubes and
feed water and steam are outside the SG tubes).

Reactor Vessel Rupture
Since the IRIS has a cavity outside the reactor pressure
vessel that will flood-up even in the event of a
beyond-design-basis reactor vessel break, the core may be
sufficiently covered as to prevent overall core melting, if a
size of rupture is up to 4 inches. This break size is small
enough to allow the EHRS assisted by the ADS to
depressurize the reactor vessel and equalize pressure with the
containment so that break flow stops and the vessel refills.
However, in the case of a very large break of the reactor
pressure vessel, core integrity may not be guaranteed, as is
the case for most PWRs.

In this preliminary PRA, the Reactor Vessel Rupture is
assumed to have a leakage size of larger than 4 inches.

Interfacing System LOCA
This event is defined as the loss of primary coolant water
outside the containment through the low-pressure systems
that interface with the reactor coolant system due to failures
of the high/low pressure boundary isolation valves.

2. Transients

Secondary Line Break 1 (SLB1)
In this category, a main steam line break upstream of main
steam isolation valves (MSIVs) and a main feedwater line
break downstream of main feedwater isolation valves
(MFIVs), inside/outside containment, are combined as in the
AP600 PRA (Ref. 4), which is being used as a reference.

In IRIS, given the low inventory of the SGs, it is expected
that there should be no significant difference between a
feed-water line break and steam line break.

If the break is at upstream of the MFIVs or at downstream
of the MSIVs, the SGs are quickly isolated by closure of
MSIVs and MFIVs. Then, all the EHRS subsystems
connected to the feed water line and steam line affected by the
break can still be considered operational for reactor coolant
system depressurization and heat removal.

This category includes:
- Main steam line break upstream of MSIVs inside/outside
 containment
- Main feedwater line break downstream of MFIVs
 inside/outside containment

Since there is no main steam relief valve in the IRIS
secondary system, no stuck open safety relief valve has been
considered.

Secondary Line Break 2 (SLB2)
In this category, the main steam line break downstream of
MSIVs and main feedwater line break upstream of MFIVs are
combined as discussed above (due to the low inventory of the
SGs). However, if the break is at upstream of the MSIV or
downstream of the MFIV, one-out-of-four subsystems of the
EHRS will be lost, since one-out-of-four subsystems of
EHRS is connected to one-of-the-four steam and feed water
lines.

This category includes:
- Main steam line break downstream of MSIVs outside
 containment
- Main feedwater line break upstream of MFIVs outside
 containment

Transients with Main Feed Water
If transients result in automatic or manual trip and main
and startup feed water are available, such events are
categorized into Transient with Main Feed Water.

This category includes:
- Excessive feed water
- Loss of primary flow
- Reactivity control imbalance
- Core power excursion
- Loss of component cooling water and service water
- Turbine trip
- Manual reactor trip
- Spurious reactor trip
- Other reactor trip
- Spurious engineered safety feature actuation

Transients without Main Feed Water
This category includes the events that result in total loss of
main feed water as follows:
- Loss of ac instrumentation and control bus
- Loss of non safety-related bus
- Inadvertent closure of all MFIVs

In addition, transients with partial loss of main feed water might be included in this category.

- Steam or feed water leakage
- Partial closure of MFIVs
- Partial loss of feed water
- Loss of control and instrumentation air

Loss of Condensate/ Turbine Bypass System

Transients resulting in loss of secondary cooling via turbine bypass are considered as Loss of Condensate/ Turbine Bypass System.

This category includes,

- Loss of condenser heat sink
- Loss of condenser vacuum
- Turbine bypass unavailable

Loss of Offsite Power (LOOP)

A loss of offsite power has been one of initiating events that contributed to the total core damage frequency in past PRA studies. In this preliminary PRA, the category will include a loss of offsite grid power and failure of equipment that ties the plant to the grid.

Anticipated Transients without Scram

Transients without success of reactor trip considered in the IRIS PRA will be further modeled in an anticipated transient without scram event.

IV. Mitigation Sequences following the events

It should be noted that in IRIS plant reactor trip must be automatically accomplished by the reactor protection system in all events. Also the EBS will be a diverse means for shutting down the reactor core to assure reactor sub-criticality in all events. Following the reactor trip, the EHRS is automatically actuated by initiating safety signals to remove decay heat and to decrease the primary pressure quickly during events. However, decay heat can be removed via secondary-side cooling provided by non-safety-related main and/or startups feed water, and steam dump systems following SGTR and some transients.

The sequence following the postulated failure of the EHRS is common in all events. If the EHRS cannot remove heat and reduce the primary pressure sufficiently, the ADS will be actuated automatically by receiving the signals to reduce the primary coolant pressure. After the reactor vessel is depressurized by the ADS, the LGMS will provide water from the pressure suppression pool to the reactor pressure. The PCCS will be the ultimate heat sink to release heat to the environment.

The success criteria have been determined as follows:

For General LOCA,

- EHRS (3 of 4 subsystems) successful
- EHRS (less than 3 subsystems), ADS (1 of 2 lines), LGMS (1 of 2 subsystems) and PCCS successful

For ADS line break,

- EHRS (3 of 4 subsystems) successful
- EHRS (less than 3 subsystems), LGMS (1 of 2 subsystems) and PCCS successful

For LGMS line break,

- EHRS (3 of 4 subsystems) successful
- EHRS (less than 3 subsystems), ADS (1 of 2 lines), LGMS (1 of 1 subsystem) and PCCS successful

Reactor sub-criticality must be accomplished in any sequences.

Steam Generator Tube Rupture

In case of a SGTR event, the affected SG pair (actually two SGs) is isolated by closing the main steam/ feed water isolation valves in its associated steam and feedwater lines.
The startup feed water system and steam dump systems are automatically actuated to cool the primary fluid via the six intact/unaffected SGs. Should the normal heat removal method fail, only one-out-of-three subsystems of the EHRS are needed to mitigate the sequence. If isolation of the affected SG fails, the turbine stop valve can still provide isolation and the EHRS provides decay heat removal and primary coolant depressurization. Note that with the normal isolation of the steam and feed water lines of the affected SG pair it is not required to depressurize the primary coolant system to equalize the pressure to the secondary system following the SGTR event SGs, since the design pressure of secondary system is the same as that of primary system. Instead of the primary coolant depressurization, the affected SG pair is simply isolated by closure of both one of two MFIVs and one of two MSIVs.

In summary, the success sequences for SGTR are,

- Affected SG isolation and EHRS (1 of 3 subsystems) successful
- Affected steam generator isolation, feedwater and steam dump
- Affected steam generator isolation, ADS (1 of 2 lines), LGMS (1 of 2 subsystems) and PCCS successful
- Turbine stop valve isolation, and EHRS (1 of 3 subsystems)

Reactor sub-criticality must be accomplished in any sequences.

Reactor Vessel Rupture
IRIS has a potential to cope with limited vessel break size, while core damage might occur in case of a large vessel break at the lower part of the reactor vessel. In this preliminary PRA it is assumed conservatively that the Reactor Vessel Rupture leads to core damage without any possibilities of event mitigation, since the post-accident sequence is currently under investigation.

Interfacing System LOCA
In general, the occurrence of an interfacing system LOCA can take place in the normal residual heat removal system. IRIS will be very similar to recent advanced reactor designs which employ additional isolation, have a higher NRHR system design pressure, and minimize the number of interfaces so that the occurrence of the interfacing system LOCA will be decreased. However, once the interfacing system LOCA event occurs, it is conservatively assumed that the event lead to core damage, because the reactor coolant system inventory is discharged outside containment and will not be made up.

Steam Line Break 1 and 2
For all the SLB events, SGs connected to the failed main feed water/steam line must be isolated by closure of the corresponding MFIVs and MSIVs. Since all SGs are isolated, the main feed and main steam systems are not available following SLBs, therefore the power conversion system cannot be used to mitigate the sequences. However, one out of three trains of the EHRS is sufficient to remove the decay heat.

In IRIS, given the small mass inventory of the SGs, it is expected that there should be no significant difference between a main feed water line break and a steam line break. Except for the EHRS success criteria, the success sequences for SLB1 and SLB2 are currently considered the same as follows,

- Affected main feed water/steam line isolation and EHRS (1 of 4 subsystems for SLB1, 1 of 3 subsystems for SLB2) successful
- Affected main feed water/steam line isolation, ADS (1 of 2 lines), LGMS (1 of 2 subsystems) and PCCS successful

Reactor sub-criticality must be accomplished in any sequences.

Transients with Main Feed Water
In cases where the power conversion system can be operated, first the turbine is bypassed to be able to utilize the main feed water system (MFWS) to remove decay heat to the environment through the secondary cooling. If the MFWS fails, but the condensate system is still available, the startup feed water system (SFWS) can maintain the function. Following the failure of both the MFWS and the SFWS, the actuation of the EHRS is required to mitigate the sequences.

In this event safety signals actuate two out of four subsystems of the EHRS, while only one out of four subsystems is sufficient to terminate the sequences.

The success sequences for Transients with Main Feed Water are,

- MFWS, turbine isolation, and steam bypass successful
- SFWS successful, turbine isolation, and steam bypass successful
- EHRS (1 of 4 subsystems) successful
- ADS (1 of 2 lines), LGMS (1 of 2 subsystems) and PCCS successful

Reactor sub-criticality must be accomplished in any sequences.

Transients without Main Feed Water
In this event the SFWS with condensate/turbine bypass system can be used instead of the MFWS. Following the failure of the SFWS, the sequences are the same as in the Transient with Main Feed Water.

The success sequences for Transients without Main Feed Water are as follows:

- SFWS, turbine isolation, and steam bypass successful
- EHRS (1 of 4 subsystems) successful
- ADS (1 of 2 lines), LGMS (1 of 2 subsystems) and PCCS successful

Reactor sub-criticality must be accomplished in any sequences.
sequences.

Loss of Condensate/Turbine Bypass System

In this event, both no MFWS and SFWS via condensate/turbine bypass system are available for heat removal at the first stage of the mitigation sequences. The EHRS can be used instead.

The success sequences for Loss of Condensate/Turbine Bypass System are as follows:

- EHRS (1 of 4 subsystems) successful
- ADS (1 of 2 lines), LGMS (1 of 2 subsystems) and PCCS successful
 Reactor sub-criticality must be accomplished in any sequences.

Loss of Offsite Power

If loss of offsite power occurs, the two diesel generators start to provide electric power, and the non-safety power conversion system with main or startup feed water pumps and steam dump (turbine bypass) provide core cooling. Even in the case of the failure of both diesel generators (DGs), the EHRS and the other safety systems can be actuated, because either each valve has an uninterruptible battery power supply or fails open on loss of electric power. In EHRS actuation under this condition, air-operated valves fail open and the MSIVs and MFIVs fail close to initiate function the system. If both diesel generators fail, and in addition, all four trains of the EHRS fail open, the ADS and the other required safety systems will be actuated automatically, if required. It is noted that ac power is not required for actuation of any safety systems, because 72-hour batteries supply power to the valves. Therefore, recovery of ac power in the early stage is not considered in the sequence.

The success sequences for Loss of Offsite Power are,

- 1 of 2 DGs, and MFWS and steam dump successful
- 1 of 2 DGs, and SFWS and steam dump successful
- EHRS (1 of 4 subsystems) successful
- ADS (1 of 2 lines), LGMS (1 of 2 subsystems) and PCCS successful
 Reactor sub-criticality must be accomplished in any sequences.

ATWS

ATWS have been one of important initiating events in past PRAs, but they are expected to be much more benign in IRIS because of its safety-by-design characteristics.

IV. Results and Discussion

Fault trees were developed to calculate the failure probability of the systems to mitigate any initiating events and event trees were developed to represent the accident progression and to estimate the core damage frequency (CDF) for internal initiating events for IRIS. At the time these analyses were performed, the plant design was still in the preliminary design phase. Many of the system dependencies, common cause failures, and human operations included in the fault trees were based on information in the AP600 PRA (Ref. 4). Conservative modeling was used to compensate for uncertainties and the lack of design detail. Furthermore, a number of potential success paths could not be credited in the event tree analyses because of the lack of supporting thermal hydraulic (T-H) analyses.

These models were quantified with the best available data to provide a preliminary estimate of the core damage frequency and to provide a preliminary risk profile that could provide an early indication of potential problem areas. The preliminary estimate was of the order of 1.0E-06 per year which was consistent with the AP600. The three transient initiator categories, Transients with Main Feedwater, Transient without Main Feedwater and Loss of Condensate/turbine bypass system, were the dominant risk contributors. Because the power conversion system is not significantly different from current plants, the transient initiating event frequency is about the same as for current plants. Because of the lack of supporting best-estimate T-H analyses, several potential success paths for the transient challenges have not yet been credited. This resulted in a conservatively high conditional core damage frequency for transients. As the design evolves and more T-H analyses are completed, these success paths will be incorporated and the CDF contributions due to transient initiators are expected to significantly decrease.

One other area in which the preliminary IRIS CDF differs from the AP600 is in the CDF contribution associated with LOCAs. For AP600, LOCAs are the dominant contributor to CDF. For IRIS, LOCA contribute very little to CDF. On an absolute basis, the IRIS LOCA CDF is a factor of 5 lower than the AP600 LOCA CDF. This directly reflects the IRIS design feature of the elimination of loop piping for the RCS.

The preliminary risk profiles show that CDF contribution for LOCA has been significantly reduced by an IRIS design feature and the risk profile did not indicate any design areas that might adversely impact risk. Once better analyses are performed for the other initiators and the safety by design is accounted for, it is expected that a similar reduction will be obtained and the IRIS design will have a CDF for internal initiators significantly less than 1.0E-06.

V. Conclusion

The preliminary level-1 at-power internal-event PRA of the IRIS plant has shown possible initiating events and post-event sequences including both safety and non-safety systems.

Although the PRA is far from being completed, it was found that each event has diverse mitigation paths. The total CDF was relatively high because, due to the early stage of investigation, some success paths were not credited. It is to be expected that the IRIS plant will achieve a significantly lower core damage frequency.
Nomenclature

ADS Automatic Depressurization System
ATWS Anticipated Transients without Scram
CPSS Containment Pressure Suppression System
DG Diesel Generator
EBT Emergency Boration Tank
EHRS Emergency Heat Removal System
IRIS International Reactor Innovative and Secure
LGMS Long-term Gravity Makeup System
LOCA Loss of coolant Accident
LOOP Loss of offsite power
SLB Secondary Line Break
MFIV Main Feedwater Isolation Valve
MFWS Main Feedwater System
MSIV Main Steam Isolation Valve
PCCS Passive Containment Cooling
PRA Probabilistic Risk Assessment
RV Reactor Vessel
SFWS Startup Feedwater System
SG Steam Generator
SGTR Steam Generator Tube Rupture
SLB Secondary Line Break

References