Numerical Simulation of a Single Drop Impact on Liquid Surface using Particle Method

Heng XIE*, Seiichi KOSHIZUKA and Yoshiaki OKA
Nuclear Engineering Research Laboratory, The University of Tokyo, Tokai, Naka, Ibaraki, 319-1188, Japan

The process of single liquid drop impact on thin liquid surface is numerically simulated with Moving Particle Semi-implicit (MPS) method. The mathematical model involves gravity, viscosity and surface tension. The model is validated by simulation of the experiment of Wang and Chen (2000) and Manzello and Yang (2002). It is found that the dynamic processes after impact are sensitive to the liquid pool depth and the initial drop velocity. In the cases that the initial drop velocity is low, the drop will be merged with the liquid pool and no big splash is seen. If the initial drop velocity is high enough, the dynamic process is related to the liquid depth. If the liquid film is very thin, a bowl-shape thin crown is formed immediately after the impact. The total crown subsequently expands outward and breaks into many tiny droplets. When the thickness of the liquid film increases, the direction of the liquid crown becomes normal to the surface and the crown propagates outward. It is also found that the radius of the crown is described by a square function of time: \( r_c = [c(t - t_0)]^{1.5} \) as shown by Weiss and Yarin (1999). When the liquid film is thick enough, a crown and a deep cavity inside it are formed shortly after the impact. The bottom of the cavity is initially oblate and then the base grows downward to form a sharp corner and subsequently the corner moves downward.

KEYWORDS: MPS method, drop impact, liquid surface, numerical simulation

I. Introduction

The characteristics of liquid droplet impinging on surface are of great importance in a variety of different fields. For example, high-speed impacts with solids can cause severe erosion in steam turbines. The splashing of raindrops plays an important role in soil erosion and in the dispersal of seeds and microorganisms. The other engineering application includes spray cooling, spray coating and ink-jet painting. This process can also be encountered in nuclear engineering. In LWR, liquid droplet behaviors are related to many phenomena, such as the mist-annular flow existing in BWR and the dispersed droplet flow in post-CHF regime. In the former, the mechanism of the droplet impacting on the liquid film attached on the surface of fuel rod will affect the depositions of droplet and subsequently the mass flux and thickness of the liquid film which are key parameters of dry-out phenomena. In the latter, direct contact between liquid droplets and wall has an important contribution to the total heat transfer.\(^1\)\(^2\)

An important distinction made for liquid droplet/surface interaction is the type of impacted surface. The target surface can be either a solid or a liquid surface. Depending on the type, the dynamics process of the impacting can be vastly different. The fluid mechanics of droplet collision with a solid surface has been studied in great detail, including through the experimental (\(^5\)-\(^10\)) and numerical simulation method (\(^11\)-\(^15\)). The research on the impact of a liquid droplet with a liquid surface is comparably rare. It was found that qualitatively different behaviors and phenomena can occur depending on different condition: the drop coalescence with the liquid surface, splashing by creating a crown, a so called Worthington jet or a vortex, droplet rebound, and so on. In several cases, one or more bubbles could be entrained by the drop impact. The entrained bubbles were thought as the reason of the rejected jet (\(^16\), \(^17\)). This phenomenon did not occur in the cases of shallow liquid surface (\(^18\)). Hobbs and Osheroff (\(^19\)) studied the splashing of a drop after impacting on different depths of the liquid pool using the photographs taken by a high-speed camera. They found that the phenomena had close relation to the depth of the target liquid pool. In their experiment, it was found that no jet drops were produced for the pool depth less than 3mm. Clearer photos were gotten by Macklin and Hobbs (\(^20\)) by high-speed movies. They also explained the phenomena by the interaction of the subsurface cavity with the solid surface beneath the liquid. Wang and Chen (\(^21\)) experimentally studied the drop impingement onto liquid films with thickness of the order of 1mm using the glycerol-water solution. The thickness of liquid film was

---

\(^*\) Corresponding author, Tel. +81-29-287-8433, Fax. +81-29-287-8488, E-mail: xie@utnl.jp
To simulate large deformation of free surface like the drop impact, the particle method has natural advantage because in this method it is not necessary to use artificial method to track the free surface and the interfaces are always clear. The numerical diffusion can also be avoided because the convection is directly calculated by the motion of particles. In present study, Moving-Particle Semi-implicit method (MPS) is employed to simulate dynamics process of droplet impact on thin liquid surface. The typical cases in Wang and Chen’s paper\(^2\) and Manzello and Yang’s paper\(^2\) are chosen to simulate. The calculated results are compared with the experimental results to verify the model. The effects of depth of liquid are also numerically studied and analyzed.

II. Mathemetic model

1. Governing equations

Mass and momentum equations for incompressible flows are shown as follow:

\[ \nabla \cdot \mathbf{u} = 0 \]  \hspace{1cm} (1)

\[ \rho \frac{Du}{Dt} = -\nabla P + \mu \nabla^2 \mathbf{u} + \rho g + \sigma k \delta \mathbf{n} \]  \hspace{1cm} (2)

where \( \rho \) is the density, \( \mathbf{u} \) is velocity, \( t \) is time, \( P \) is pressure, \( \mu \) is viscosity coefficient, \( g \) is gravity acceleration, \( \sigma \) is surface tension coefficient, \( k \) is the curvature of the surface, \( \delta \) is the delta function, \( \mathbf{n} \) is the unit vector normal to the interface.

2. MPS method

Since the method has been introduced in many published paper, it is described in brief here. The detail of the model and the algorithm can be seen from Refs23-26.

In the MPS method a particle interacts with others in its vicinity covered with a weight function \( w(r) \), where \( r \) is the distance between two particles. In this study, the following function is employed

\[ w(r) = \begin{cases} \frac{r - r_e}{r_e} - 1 & (r < r_e) \\ 0 & (r > r_e) \end{cases} \]  \hspace{1cm} (3)

Since the area that is covered with this weight function is bounded, a particle interacts with a finite number of neighboring particles. The radius of the interaction area is determined by a parameter \( r_e \). The particle number density at co-ordinates \( r \) is defined by

\[ \langle n \rangle_i = \sum_j w(r_i - r_j) \]  \hspace{1cm} (4)

A gradient vector between two particles \( i \) and \( j \) possessing scalar quantities \( \phi_i \) and \( \phi_j \) at co-ordinates \( r_i \) and \( r_j \) is simply defined by \( (\phi_j - \phi_i)(r_j - r_i)/|r_j - r_i|^2 \). The gradient vector at the particle \( i \) is given as the weighted average of these gradient vectors

\[ \langle \nabla \phi \rangle_i = \frac{d}{n} \sum_{j=i} \left[ \frac{\phi_j - \phi_i}{|r_j - r_i|^2} (r_j - r_i) w(r_j - r_i) \right] \]  \hspace{1cm} (5)

where \( d \) is the number of space dimensions and \( n \) is the particle number density.

Laplacian is an operator representing diffusion. In the MPS method, diffusion is modeled by distribution of a quantity from a particle to its neighboring particles by use of the weight function:

\[ \langle \nabla^2 \phi \rangle_i = \frac{2d}{\lambda n} \sum_{j=i} \left( \phi_j - \phi_i \right) w(r_j - r_i) \]  \hspace{1cm} (6)

where \( \lambda \) is a parameter by which the variance increase is equal to that of the analytical solution:

\[ \lambda = \frac{\int w(r) r^2 dv}{\int w(r) r dv} \]  \hspace{1cm} (7)

3. Discretization of viscosity

In the momentum equation (2), the viscosity term has the form of Laplacian operator. So equation (6) is adopted for discretization of the viscosity term:

\[ \langle \nabla^2 \mathbf{u} \rangle_i = \frac{2d}{\lambda n} \sum_{j=i} \left( \mathbf{u}_j - \mathbf{u}_i \right) w(r_j - r_i) \]  \hspace{1cm} (8)

The model of the viscosity term is added after the calculation of gravity. An explicit algorithm is employed as follow.

Calculation of viscosity means calculation of velocity \( \mathbf{u} \)

\[ \mathbf{u}_i^{**} = \mathbf{u}_i^* + \nu \langle \nabla^2 \mathbf{u} \rangle_i \cdot dt \]  \hspace{1cm} (9)

where \( \mathbf{u}_i^{**} \) is the velocity vector after the calculation of the viscosity term, \( \mathbf{u}_i^* \) is the velocity vector before the calculation of the viscosity term.

To the particles on the free surface, the viscosity force between the liquid particle and the outside air is markedly smaller than that between liquid particles when the velocity of the airflow on the free surface is not very large. Therefore, the outside air is treated as vacuum and no air particles exist.
The diameter of the drop $D$ is 4.2mm. The density of the glycerol-water solution used in these three cases $\rho$ is 1200kg/m$^3$. The viscosity $\mu$ is 0.022Ns/m$^2$. The surface tension coefficient $\sigma$ is 0.0652N/m. The Ohnesorge number $Oh = \frac{\mu}{(\sigma\rho D)^{0.5}}$ is 0.0384.

In case A (Fig.2 in [21]), the impact Weber number ($We = \rho U^2 D / \sigma$, where $U$ is the drop velocity before impact) is 381 and the dimensionless film thickness $H$ (the ratio of target liquid film thickness to drop diameter) is 0.05. In case B (Fig.3a in [21]), the dimensionless film thickness $H$ is kept at 0.05 but the impact Weber number is increased to 2010. In case C (Fig.3b in [21]), the impact Weber number is the same as that of case B but the dimensionless film thickness $H$ increases to 0.5.

The two-dimensional version of the MPS method is used. The coordinates normal and parallel to the liquid surface are considered. The calculated results of case A are shown in Fig.2. From the figure, it can be seen that a small rim forms in the contact area between the drop and films immediately after the drop attacks on the liquid film. The particles in the liquid film suffer the impulsive force from the drop and the resistance from the static liquid film. Only the area in the direction inclined outward are empty. Therefore, the particles move to this direction and a rim forms at the edge of the drop. When more particles in the drop impact on the film, their kinetic energy is reflected by the solid surface and the velocity is changed to outward and the spreading process begins. With the supply of mass and kinetic energy from the drop, the rim expands and propagates outward. A structure looking like the crown is formed. The edge of the rim becomes sharp and its curvature is large which causes strong surface tension that will hold back the expansion of the rim.

When the kinetic energy is all dissipated by the viscosity and surface tension, the crown falls down and merges with the film. The calculated result basically agrees with the experimental result. The main difference between them is that some small drops appear at the edge of the rim in the calculated result. But this phenomenon did not occur in the experimental result. The mass of small drops is only a small part of that of the initial drop. It should be mentioned that the thickness of the film on the contact area becomes thicker after the impact due to the mass from the drop. This means that the solid surface under the liquid film will not be exposed to air due to the impact of drop. This phenomenon perhaps has a special meaning in BWR condition since the liquid film will not be broken due to the impact of drop.

III. Results and Discussion

To illustrate the complete progress of droplet splash after impact and verify the model described above, the cases in Wang and Chen’s paper [21] are chosen to simulate.

In Wang and Chen’s experiment, the glycerol-water solutions are used as the working medium and the impacting drop and target liquid are the same fluid. The “single-shot-flash” photographic technique is used to freeze the instantaneous motion of the impact and the impinging velocity is measured from the images of the drop during the last 0.1ms period before it contacts the target liquid surface. The complete sequences of photograph of three cases in which the liquid film thickness and impact velocity vary are available in the paper. All parameters of drop and target liquid film are also shown in the paper.
**Fig. 3** shows the calculated result of case B. Compared to case A, the impact Weber number is increased from 381 to 2010 with keeping the dimensionless film thickness. Similar to Fig. 2, a rim forms at the contact area between the drop and the film immediately after impact. At the beginning the rim is slightly tilted backwards at its top in a very short time, then its top becomes straight and subsequently tilts forward. The crown formed in this case is bigger than it in Fig. 2 due to the larger impact velocity. The crown breaks up into many smaller drops. The thickness of the film on the contact area also becomes thicker during the complete process. The calculated result agrees with the experimental result.

The calculated result by the MPS method of case C is shown in **Fig. 4**. The only different parameter between the case B and case C is the liquid film thickness. The value of dimensionless film thickness $H$ is increased from 0.05 in case B to 0.5 in case C. By comparing Fig. 4 and Fig. 3, two distinct differences can be observed. One is the shape of the crown formed after impact; the whole crown wall significantly expands outwards as the shape of a bowl in Fig. 3 while the crown wall develops approximately normal to the solid surface and looks like a cylinder in Fig. 4. The second difference is that the crown totally breaks up into tiny droplets shortly after the impact in Fig. 3. But this phenomenon does not occur in Fig. 4 in which only several tiny droplets eject from the top of the crown. This can be explained as follows; the liquid film plays a role of buffer.
Most of the kinetic energy of the impact drop is absorbed and dissipated by the liquid film. The thicker the liquid film is, the smaller the reflected kinetic energy is. Therefore, the expansion speed of the crown is smaller and the crown does not get enough energy to overcome the surface tension to break up. From the calculated result it can be found that the thickness of the liquid film becomes thinner after impact due to the cavity formed by impact. The calculated result agrees well with the experimental result.

In Weiss and Yarin’s paper\(^{18}\), it is found that the radius of the crown formed by impact \(x_c\) can be very accurately described by a square-root function of time \(t\):

\[
x_c = [c(t - t_0)]^{1/2},
\]

where \(c\) and \(t_0\) are constant. We try to fit the calculated result of the crown in Fig.4 by the same form. The result is shown in Fig.5. The crown width \(y\) is fitted by the equation \(y = 0.00913(t + 0.4)^{0.5}\) (unit of \(y\) is \(m\) and unit of \(t\) is \(ms\)) that shows good agreement.

In the above calculated result and Wang and Chen’s experimental photos, the central jet described in Rein\(^{16}\) and Liow\(^{17}\)’s paper is not found. In [16], it is thought that the central jet is related to the gas bubble entrainment. In the present study the liquid film is very thin, so that it is impossible to entrain a gas bubble. To further verify this idea, two cases in Manzello and Yang’s paper\(^{22}\) are chosen to simulate. The working medium is water on atmospheric air. The first case is the drop impact on a shallow liquid pool whose depth is 2mm. The impact Weber number is 202. The calculated results are shown in Fig.6. In the figure, it can be seen that the crown sharp is similar to that in Fig.4. The reason is that the depths of targeted liquid pool are similar in these two cases.
The second case chosen in [22] to simulate is the drop impact on a liquid pool whose depth is 7mm. The impact Weber number is also 202. The calculated result is shown in Fig.7. The result is obviously different from that of the previous case. Immediately after impact a semicircular crater is formed in the target liquid pool. Then the size of the crater increases and the shape of it changes. The crater becomes oblate and its base grows downward to form a sharp hole. The pictures under the liquid surface can’t be seen in the photos in Manzello and Yang’s paper, though similar shapes can be seen in Rein’s paper[16] and Liow’s paper[17]. In [16] and [17], the sharp hole on the base of the crater causes gas bubble entrainment that is the reason of the rejected central jet. The gas model is not included in the present study, so that the rejected jet cannot be simulated.

**IV. Conclusion and further work**

In the present study, the process of a single liquid drop impact on thin liquid film is numerically simulated with Moving Particle Semi-implicit (MPS) method. The model is validated by simulating the experiment cases of Wang and Chen’s paper and Manzello and Yang’s paper. In these cases, the calculated results agree well with the experimental results.

It is found that the dynamic process after impact is sensitive to the thickness of the liquid pool and the initial drop velocity. In the cases that the initial drop velocity is low, the drop merges with the liquid film and no strong splash is observed. The thickness of the film in the area of impact increases due to the mass from the drop. If the initial drop velocity is high enough, the dynamic process after impact is related to the thickness of the liquid film. If the liquid film is very thin, a bowl-shape thin crown is formed immediately after impact. The crown subsequently expands outward and breaks into many tiny droplets. The thickness of the liquid film behind the crown increases since the mass in this area is pushed to form the crown. It is also found that in this stage the radius of the crown can be described by a square
function of time: \( t_C = [c(t - t_0)]^{0.5} \) as seen in Weiss and Yarin’s paper.

When the liquid film is thick enough, a crown and a deep cavity inside it are formed shortly after impact. The bottom of the cavity is initially oblate and then the base grows downward to form a sharp hole. The form and recover of this sharp corner may be related to the bubble entrainment and the rebounded jet as shown in experimental results.

The further work is to study the impact dynamics related to BWR condition in which the liquid film attached on the surface of the fuel rod is very thin and the mechanism of the impact on shallow liquid surface should be focused on.

References


