URANIUM TETRAFLUORIDE THERMOPHYSICAL PROPERTIES MEASUREMENTS BY THE LASER FLASH METHOD

Ricardo Alberto Neto Ferreira1, Denise das Mercês Camarano2, Odair Miranda3, Pablo Andrade Grossi4, Luciana Capanema Silva Carneiro5, Égonn Hendrigo Carvalho Silva6, Fabrício Lima Migliorini7, Bruno Moreira de Aguiar8, Wesden de Almeida Borges9, Adonis Marcelo Saliba-Silva10

1,2,3,4,5,6,7 Centro de Desenvolvimento da Tecnologia Nuclear
Comissão Nacional de Energia Nuclear
Avenida Presidente Antônio Carlos 6627
Cidade Universitária – Pampulha - Caixa Postal 941
CEP: 30161-970 - Belo Horizonte - MG - Brasil
1 ranf@cdtn.br
2 dmc@cdtn.br
3 odairm@cdtn.br
4 pabloag@cdtn.br
5 lucsc@hotmail.com
6 egonn.ufmg.br
7 flmigliorini@gmail.com
8,9,10 Instituto de Pesquisas Energéticas e Nucleares
Comissão Nacional de Energia Nuclear
Avenida Lineu Prestes 2224
Cidade Universitária
CEP: 05508-000 - São Paulo – SP – Brasil
8 bruaguiar@ipen.br
9 wesden@hotmail.com
10 saliba@ipen.br

ABSTRACT

In order to increase the efficiency of the metalothermic reduction process employed by the IPEN-Instituto de Pesquisas Energéticas e Nucleares, to produce metallic uranium by means of uranium tetrafluoride reduction with magnesium, is planned utilize a mathematical model that numerically simulates the heat distribution in the charge of powders of uranium tetrafluoride and metallic magnesium duly blended. Because this program requires as input data the thermal conductivity of the uranium tetrafluoride powder and this data was not found in the literature, pellets were produced by uniaxially pressing the uranium tetrafluoride powder in pellets, employing the same technology developed at CDTN-Centro de Desenvolvimento da Tecnologia Nuclear, to produce nuclear fuel pellets. The thermophysical properties of these pellets were measured at the LMPT - Laboratório de Medição de Propriedades Termofísicas de Combustíveis Nucleares e Materiais of CDTN applying the laser flash method. From the measurements results, it was possible to obtain an extrapolated value of ca. 0.24 W m\(^{-1}\) K\(^{-1}\) for the thermal conductivity of the UF\(_4\) powder sample in the loose state and at room temperature. This value will be employed as input data of the mathematical model, whose results will be subject of a future publication. The UF\(_4\) powder pelletizing parameters and the thermophysical properties results (density, thermal diffusivity and thermal conductivity), are reported.

1. INTRODUCTION

The production of metallic uranium at IPEN-Instituto de Pesquisas Energéticas e Nucleares is performed by means of a metalothermic reduction process, whereby uranium tetrafluoride
powder is blended together with metallic magnesium powder and charged in a graphite crucible. Fluorite is added in order to complete the open space. The crucible is put inside a stainless steel reactor and placed in a soaking pit furnace and then heated up 640°C, when magnesiothermic ignition happens promoting the formation of molten metallic uranium. The ingot is formed in the crucible bottom, covered basically by MgF₂ slag [1,2,3].

It is planned to study the process by means of a mathematical model that numerically simulates the distribution of heat in the charge of powders of uranium tetrafluoride and metallic magnesium, aiming to increase the efficiency of the ignition process during reaction. Because this program requires as input data the thermal conductivity of the uranium tetrafluoride powder, pellets were produced by uniaxially pressing the powder in pellets, in order to measure its thermophysical properties and so to obtain the thermal conductivity of the uranium tetrafluoride powder. Thermal conductivities for UF₄, with and without Mg blendings have been presented by Beltrán [4], suggesting values from 0.6 to 1.2 W·m⁻¹·K⁻¹ for pure UF₄ and from 0.9 to 2.1 W·m⁻¹·K⁻¹ for UF₄/Mg blendings, perhaps measured in a loosely pressed material, without information about the measuring technique.

The UF₄ powder pelletizing parameters and the thermophysical properties (density, thermal diffusivity and thermal conductivity) results are reported.

2. METODOLOGY

2.1. UF₄ Pellets Fabrication

The material was pressed in pellets using an especial model of hydraulic press, whose cycle is shown in Fig. 1 [5]. The cylindrical die used has a diameter of 11.1 mm and the system works with a floating die in order to obtain double effect. To avoid lamination due to the pellet respiration during the extraction, the pellet is extracted under a reduced pressure, and the die has a conicity in its opening. The die is automatically lubricated by the lower punch, but in the present case, it was not used lubricant. Three pellets were manufactured at compaction pressures of 400, 600 and 800 MPa.

Figure 1. Hydraulic press for fuel pellet fabrication and pressing cycle.

INAC 2013, Recife, PE, Brazil.
2.2. UF₄ Pellets Green Density Measurement

The green density of each pellet was determined geometrically by using the following equation:

\[\rho = \frac{M}{\pi D^2 L / 4} \]

where:
\(\rho \): green pellet density \([\text{g} \cdot \text{cm}^{-3}]\)
\(M \): green pellet mass \([\text{g}]\)
\(D \): green pellet diameter \([\text{cm}]\)
\(L \): green pellet thickness \([\text{cm}]\)

2.3. Thermophysical Properties Measurements - Laser Flash Method

For the pellets thermal diffusivity measurement were utilized the laser flash method [6, 7], and the in house made bench shown in Fig. 2.

\[\alpha = \frac{1.37 L^2}{\pi^2 t_{1/2}} \]

where:
\(\alpha \) is the sample thermal diffusivity \([\text{m}^2 \cdot \text{s}^{-1}]\).
\(L \) is the sample thickness \([\text{m}]\).
\(t_{1/2} \) is the half time \([\text{s}]\).
The used CO$_2$ laser has a maximal power output of 100 Watts and the temperature of the sample rear face is measured by an infrared thermometer. The sample oven has a heat element of platinum / 30%Rodium that can be heated up to 1700°C, but the measurements were made from room temperature up to ca. 177°C. The thermal conductivity k [W·m$^{-1}$·K$^{-1}$] of each pellet was calculated by the following equation:

$$k = \alpha \cdot \rho \cdot C_p$$ \hspace{1cm} (3)$$

where C_p is the specific heat of the material [J·kg$^{-1}$·K$^{-1}$], and ρ its density [-kg·m$^{-3}$].

3. RESULTS

Table 1, 2, 3 and 4 show the pelletizing parameters and the obtained thermophysical properties for the three pellets.

To the thermal conductivity calculations, considering that the temperature range is narrow, for the specific heat of the material it is used a mean value of 228.8 J·kg$^{-1}$·K$^{-1}$, from a total of 45 measurements results, obtained by applying a model proposed by Grossi [8], to the laser flash method. For the sample density it was used the green pellet density ρ values.

Fig. 4 shows the pressing characteristic curve of the material. In Figure 5 it is observed the discrete decrease of the UF$_4$ thermal diffusivity with the increase of the effective temperature, and Figure 6 and 7, the increase of the thermal diffusivity with the increase of the compactation pressure and the increase of the pellet green density, respectively (as expected). Figures 8 and 9 show the increase of the thermal conductivity with the increase of the compactation pressure and the increase of the pellet green density, respectively, and Figure...
10, the discrete decrease of the UF$_4$ thermal conductivity with the increase of the effective temperature.

Table 1. UF$_4$ pelletizing parameters and obtained pellets green densities and dimensions.

<table>
<thead>
<tr>
<th>Pellet Number</th>
<th>Material</th>
<th>Compaction Pressure (MPa)</th>
<th>Green pellet mass (g)</th>
<th>Green pellet diameter (cm)</th>
<th>Green pellet thickness (cm)</th>
<th>Pellet green density (g·cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UF$_4$</td>
<td>400</td>
<td>1.2232</td>
<td>1.118</td>
<td>0.2688</td>
<td>4.64</td>
</tr>
<tr>
<td>2</td>
<td>UF$_4$</td>
<td>600</td>
<td>1.4241</td>
<td>1.118</td>
<td>0.2894</td>
<td>5.01</td>
</tr>
<tr>
<td>3</td>
<td>UF$_4$</td>
<td>800</td>
<td>1.5511</td>
<td>1.118</td>
<td>0.2998</td>
<td>5.27</td>
</tr>
</tbody>
</table>

Table 2. UF$_4$ number 1 pellet thermophysical properties.

<table>
<thead>
<tr>
<th>Sample Initial Temperature (°C)</th>
<th>Rear Face Temperature Excursion (°C)</th>
<th>Effective Temperature (°C)</th>
<th>Thermal diffusivity ($\times 10^6$ m2·s$^{-1}$)</th>
<th>Thermal Conductivity (W·m$^{-1}$·K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.2</td>
<td>4.2</td>
<td>30</td>
<td>0.3225</td>
<td>0.342</td>
</tr>
<tr>
<td>95.7</td>
<td>3.7</td>
<td>102</td>
<td>0.3116</td>
<td>0.331</td>
</tr>
<tr>
<td>170.5</td>
<td>3.8</td>
<td>177</td>
<td>0.3050</td>
<td>0.324</td>
</tr>
</tbody>
</table>

Table 3. UF$_4$ number 2 pellet thermophysical properties.

<table>
<thead>
<tr>
<th>Sample Initial Temperature (°C)</th>
<th>Rear Face Temperature Excursion (°C)</th>
<th>Effective Temperature (°C)</th>
<th>Thermal diffusivity ($\times 10^6$ m2·s$^{-1}$)</th>
<th>Thermal Conductivity (W·m$^{-1}$·K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.2</td>
<td>3.6</td>
<td>24</td>
<td>0.3437</td>
<td>0.394</td>
</tr>
<tr>
<td>93.5</td>
<td>3.5</td>
<td>99</td>
<td>0.3381</td>
<td>0.387</td>
</tr>
<tr>
<td>172.5</td>
<td>3.0</td>
<td>177</td>
<td>0.3318</td>
<td>0.380</td>
</tr>
</tbody>
</table>

Table 4. UF$_4$ number 3 pellet thermophysical properties.

<table>
<thead>
<tr>
<th>Sample Initial Temperature (°C)</th>
<th>Rear Face Temperature Excursion (°C)</th>
<th>Effective Temperature (°C)</th>
<th>Thermal diffusivity ($\times 10^6$ m2·s$^{-1}$)</th>
<th>Thermal Conductivity (W·m$^{-1}$·K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.4</td>
<td>3.0</td>
<td>25</td>
<td>0.3644</td>
<td>0.439</td>
</tr>
<tr>
<td>95.9</td>
<td>2.8</td>
<td>100</td>
<td>0.3485</td>
<td>0.420</td>
</tr>
<tr>
<td>171.5</td>
<td>2.7</td>
<td>176</td>
<td>0.3480</td>
<td>0.419</td>
</tr>
</tbody>
</table>
Figure 4. Pressing characteristic curve of the UF₄ powder.

Figure 5. Discrete decrease of the UF₄ thermal diffusivity with the increase of the effective temperature.
Figure 6. Increase of the UF₄ pellets thermal diffusivity with the increase of the compactation pressure.

Figure 7. Increase of the UF₄ pellets thermal diffusivity with the increase of the pellet green density.
Figure 8. Increase of the UF₄ pellets thermal conductivity with the increase of the compactation pressure.

Figure 9. Increase of the UF₄ pellets thermal conductivity with the increase of the pellet green density.

INAC 2013, Recife, PE, Brazil.
An extrapolation using the graph of Figure 8 results in an estimative of \(0.24 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}\) for the \(\text{UF}_4\) powder thermal conductivity at room temperature in the non-pressed state, i.e., corresponding to a compaction pressure equal to zero. This value will be used in the modeling of the \(\text{UF}_4\) metalothermic reduction process of IPEN to obtain metallic uranium, whose results will be subject of another publication. For temperature of ca. 177 °C was found by extrapolation, a value of \(0.22 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}\).

For the powder thermal diffusivity, an extrapolation using the graph of Figure 6 results in a value of \(0.28 \times 10^{-6} \text{ m}^2 \cdot \text{s}^{-1}\) at room temperature and \(0.26 \times 10^{-6} \text{ m}^2 \cdot \text{s}^{-1}\) at temperatures of ca. 177 °C, and for the powder bulk density, 3700 kg·m\(^{-3}\), using the graph of Figure 4.

4. CONCLUSIONS

Pellets of uranium tetrafluoride were produced by uniaxial pressing of the powder produced at IPEN, employing the same technology developed at CDTN to produce nuclear fuel pellets. It was possible to obtain an extrapolated value of ca. \(0.24 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}\) for the thermal conductivity of the \(\text{UF}_4\) powder sample at room temperature and in the loose state, from the pellets thermophysical properties measurements results obtained applying the laser flash method over these pellets. These value will be employed as input data of a mathematical model that numerically simulates the reduction process of uranium tetrafluoride to metallic uranium, in order to optimize the efficiency of the IPEN’s metalothermic process, whose results will be subject of a future publication.
ACKNOWLEDGMENTS

The financial supports of the FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais and of the CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico are gratefully acknowledged.

REFERENCES

