INFLUENCE OF GAMMA RADIATION ON MECHANICAL AND THERMAL PROPERTIES OF *CEDRELLA FISSILIS* AND *OCOTEA POROSA* USED IN WORKS OF ART

Lucio C. Severiano¹, Francisco A. R. Lahr², Marcelo A. G. Bardi¹ and Luci D. B. Machado¹

¹Instituto de Pesquisas Energéticas e Nucleares, IPEN - CNEN/SP
Av. Professor Lineu Prestes, n. 2242
05508-000 São Paulo, SP
lucioseveriano@usp.br

²Departamento de Engenharia de Estruturas de Madeira – EESC-USP
Av. Trabalhador Sancarlense, n.400
São Carlos-SC

ABSTRACT

Woods, as other materials, are susceptible to alterations in their internal structure because of physical, chemical or biological agents. Wood can be considered a natural composite with high strength capacity provided by cellulose and hemicellulose agglutinated by lignin, substances with very distinct structures. In several applications, the use of radiation can be interesting, once it turns wood more resistant to biological demand. The application of gamma radiation in work of arts and archeological artifacts preservation began in 1970, in France. By other side, no changes in wood properties and no remaining radioactive waste were desirable. Gamma radiation from a cobalt-60 source usually is applied as a tool to the decontamination of insects and microorganisms, as well as to provide resins cure in impregnated wood. In this way, the aim of this paper is to evaluate gamma radiation effects on some physical, thermal and resistance mechanical properties of Brazilian wood species used in carving, as Cedro Rosa (*Cedrela fissilis*) and Imbuia (*Ocotea porosa*). Gamma radiation process considered different doses (25kGy, 50kGy and 100kGy). Results showed that no gamma radiation influences were detected in the studied wood properties in the dose range applied. This is a relevant conclusion that will improve safety on arts conservation around the world.

1. INTRODUCTION

Wood species have had major roles in many ancient and modern cultures due to the possibility of manufacturing furniture, sculptures and pieces of art, which can be found especially in churches, such as images, altar decorations, frames and others [1].

Essentially, the wood fibers are composed of cellulose and lignin. As cited by Zickler et al. [2], the crystalline cellulose microfibrils represent the fiber reinforcement and the amorphous hemicelluloses and lignin represent the composite matrix.

The elementary cellulose microfibrils are aligned parallel to each other and wind around the wood cell in a helical manner at a characteristic microfibril angle with respect to the cell axis. Two polymorphs of cellulose I exist, triclinic cellulose Iα and monoclinic cellulose Iβ.
Cellulose produced by primitive organisms were said to have the Iα component dominant, while those produced by the higher plants have the Iβ form dominant [2].

Native lignin is an amorphous, three-dimensional copolymer of phenylpropanoid units linked through ether and carboncarbon bonds [3-4]. It provides mechanical support for plants, as well as facilitating transport of nutrients and providing defense against attack from microorganisms due to, as discussed by Lawako et al. [5], covalent linkages between lignin and carbohydrates in native lignin in spruce (Picea abies L.) wood.

Besides the content of lignin, the degree of resistance is greatly dependent on the quality and quantity of extractives in wood [6]. As described by Beek et al. [7], these constituents are basically resin acids, free fatty acids, sterols, triglycerides and sterol esters, which are present in small concentrations (1-3% wt.).

Besides the extractives, there are other factors that contribute to increase the natural resistance of wood, such as: shape, size and arrangement of the cells (anisotropy) and reserve of materials such as crystals of silica and calcium oxalate [8-9]. There are also some important differences between the cell wall structures of hardwoods and softwoods. Native softwood tracheid tend to be longer (3−4 mm) than hardwood tracheids (0.5−1.5 mm), as well as somewhat wider (35 µm vs 20 µm, respectively) [10].

Xu and collaborators [11] investigated, by means of dual-axis electron tomography, the cell walls of radiata pine early wood, and noticed that individual cellulose microfibrils measure approximately 3.2 nm in diameter, and appear to consist of an approximate 2.2 nm unstained core and an approximate 0.5 nm thick surface layer that is lightly stained. Both individual and clustered cellulose microfibrils are seen surrounded by more heavily stained and irregularly shaped residual lignin and hemicellulose.

In Brazil, the specie Cedrella fissilis (locally denominated as cedro-rosa) has great economical importance because of its huge application in furniture, naval and aeroespaitale industries. It can be generally found at southeast Brazil in Atlantic-pluvial forest regions [12-13]. Another wood greatly used for luxury furniture and civil construction is Ocotea porosa (regionally known as Imbuia), which is a plant largely found at southern Brazil and it can reach 30 m height [14-15].

Wood, as well as all other materials, are able to undergo modifications that occur over time with varying pace [16]. These changes are produced by physical, chemical or biological agents [9]. The climate of some tropical countries which present both high temperature and air relative humidity, like Brazil, encourages the development of insects, termites, fungi and microorganisms that attack and deteriorate trees and wood made artifacts, as well as derivative materials such as paper. Silva et al. [17] said that fungi are able to hydrolyse a wide variety of polymers, including cellulose, as a result of their efficient degradative enzymes.

In this context, some studies have been performed to evaluate the use of ionizing radiation in the recovery and preservation of wood-made art works. This process has been highlighted since 1970’s when the gamma rays were applied to the destruction of living organisms present in woods without radioactive waste production. Moreover, gamma radiation from 60Co can be used to cure resins that are impregnated into wood pieces to keep its form [18-19].
Gamma radiation as sterilizing treatment causes direct damage to cell DNA through ionization inducing mutation and killing the cell. It also has an indirect effect as a result of radiolysis of cellular water and formation of active oxygen species, free radicals and peroxides causing single and double strand DNA breakages [17].

Gamma rays, electromagnetic waves with high penetrating power, pass through materials without leaving any residue. Fungi have been successfully inactivated from different materials, such as paper, wood and soil with radiation doses ranging from 6 to 15 kGy. However, in a Brazilian study some fungi from books could not be completely eliminated after irradiation with doses of 20 kGy [20].

The insect infestation control can be performed by submitting wooden objects to lower radiation doses, e.g. 0.2 – 0.5 kGy whereas the fungi and microorganisms infestation can be prevented by doses of 3 – 8 kGy and 15 – 20 kGy, respectively [21]. It is asserted to mention that irradiation technique for desinfestation of cultural heritages, frames and wooden-made artifacts has shown to be very efficient but this process does not protect the material to a re-infestation [22].

By this way, this work aims to investigate the effects of gamma radiation on disinfestation and decontamination processes of *Cedrella fissilis* (*cedro-rosa*) and *Ocotea porosa* (*imbuia*) by accompanying their thermal and mechanical properties.

2. MATERIALS AND METHODS

2.1. Sample Preparation

Samples of *Cedrella fissilis* and *Ocotea porosa* were prepared according to standard NBR ABNT 7190, Annex B [23] for the compression parallel to the grain. For thermal analysis, each wood was cut in several pieces in order to obtain homogeneous samples.

2.2. Irradiation

The samples were irradiated in a multipurpose irradiator by gamma rays from Co-60 source at a dose rate of 10 kGy·h$^{-1}$, and absorbed doses of 25kGy, 50kGy and 100kGy. These doses were performed after considering that the gamma irradiation is a very effective treatment for recovery biodeteriorated artifacts [24]. This irradiator is located at Centro de Tecnologia das Radiações (CTR/IPEN/CNEN-SP).

2.3. Thermogravimetry (TG) and derivative thermogravimetry (DTG)

The thermogravimetry was performed using a TGA50, Shimadzu Co. TG results were obtained applying mass samples of around 5 mg, heating rate of 10°C·min$^{-1}$ from room temperature up to 700°C, in dynamic atmosphere of compressed dry air with flow rate of 50 mL·min$^{-1}$.

INAC 2009, Rio de Janeiro, RJ, Brazil.
2.4. Mechanical Tests

The compression tests of the parallel fibers were performed in equipment for universal testing machine, AMSLER. The samples were subjected to different loads to verify the limits of resistance for different wood species. The strength is calculated by:

\[f_{c0} = \frac{F_{c0, \text{máx}}}{A} \] \hspace{1cm} (1)

where \(F_{c0, \text{máx}} \) is the applied force for rupture and \(A \) is the cross section area.

3. RESULTS AND DISCUSSION

Table 1 presents the average values for tensile strength at break for compression parallel to the fibers of samples of *imbuia* (*Ocotea porosa*) and *cedro-rosa* (*Cedrella fissilis*) with different radiation doses: 0kGy, 25kGy, 50kGy and 100kGy.

<table>
<thead>
<tr>
<th>Radiation dose (kGy)</th>
<th>Strength (MPa)</th>
<th>Imbuia</th>
<th>Cedro-rosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>51.5 ± 1.0</td>
<td>31.2 ± 0.4</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>52.4 ± 1.6</td>
<td>32.6 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50.6 ± 4.4</td>
<td>31.9 ± 0.6</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>50.7 ± 1.1</td>
<td>31.2 ± 0.9</td>
<td></td>
</tr>
</tbody>
</table>

By Table 1, it can be seen a similar mechanical behavior when different irradiation doses were applied to the samples of *imbuia* and *cedro-rosa*, although the latter can be considered softer than the former.

25kGy-irradiated samples showed an increasing of 2% on the tensile strength at break average values when compared to the non-irradiated *imbuia* samples (Table 1). Moreover, the same results were observed to *cedro-rosa* irradiated samples. By this way, neither higher dose (100kGy) nor lower dose (25kGy) in the studied dose range has meaningfully modified the mechanical properties of the studied wood species.
These results are corroborated by Magaudda [21] because the longer are irradiation time and irradiation doses, the greater is the possibility for oxygen in air interacts with radicals originated from material irradiation processes. Although the moisture, weather and other factors had interfered on the mechanical properties of woods, it is possible to observe no meaningful alterations on the reproducibility of the performed tests for the different irradiation doses.

The TG data allow the quantitative determination of main components of the two wood species studied. Fig. 1 to Fig. 6 and Table 2 and Table 3 show TG/DTG curves of samples of *imbuia* (*Ocotea porosa*) and *cedro-rosa* (*Cedrella fissilis*) non-irradiated and submitted to different irradiation doses of 25kGy, 50kGy and 100kGy.

In all TG curves, the first weight loss step refers to volatile components of the samples. The second one (around 150°C to 430°C) corresponds to cellulose weight loss and the third step (starting around 430°C) is attributed to lignin thermal decomposition [25].

Figure 1. TG/DTG curve for non-irradiated *Imbuia*.

Figure 2. TG/DTG curve for 100kGy-irradiated *Imbuia*.

INAC 2009, Rio de Janeiro, RJ, Brazil.
Figure 3. TG curves for non-irradiated, 25kGy-, 50kGy-, 100kGy-irradiated *Imbuia*.

Figure 4. TG/DTG curve for non-irradiated *cedro-rosa*.

Figure 5. TG/DTG curve for 25kGy-irradiated *cedro-rosa*.
Figure 6. TG curves for non-irradiated, 25kGy-, 50kGy-, 100kGy-irradiated *cedro-rosa*.

Table 2. TG weight loss data for non-irradiated, 25kGy-, 50kGy-, 100kGy-irradiated *Imbuia*

<table>
<thead>
<tr>
<th>Radiation dose (kGy)</th>
<th>Volatile components (%)</th>
<th>Cellulose (%)</th>
<th>Lignin (%)</th>
<th>Weight loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td>54</td>
<td>35</td>
<td>98</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>52</td>
<td>35</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>9</td>
<td>48</td>
<td>38</td>
<td>96</td>
</tr>
<tr>
<td>100</td>
<td>8</td>
<td>48</td>
<td>38</td>
<td>97</td>
</tr>
</tbody>
</table>

Table 3. TG weight loss data for non-irradiated, 25kGy-, 50kGy-, 100kGy-irradiated *cedro-rosa*

<table>
<thead>
<tr>
<th>Radiation dose (kGy)</th>
<th>Volatile components (%)</th>
<th>Cellulose (%)</th>
<th>Lignin (%)</th>
<th>Weight Loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>59</td>
<td>26</td>
<td>95</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>60</td>
<td>27</td>
<td>99</td>
</tr>
<tr>
<td>50</td>
<td>12</td>
<td>57</td>
<td>28</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>11</td>
<td>57</td>
<td>29</td>
<td>100</td>
</tr>
</tbody>
</table>

The data from table 2 and table 3 allow observing that ratio between cellulose: lignin is higher for *cedro-rosa* than for *imbuia*, which agree with the evaluated mechanical properties and suggest that *cedro-rosa* is softwood meanwhile *imbuia* is a hardwood, comparatively.
According to Campanella et al. [25] the cellulose thermal degradation occurs in many steps, starting by its depolymerization, generating glucose and oligosaccharides. Later on, during the pyrolysis, water and acids are also produced from cellulose derivatives. Additionally, the thermal degradation of lignin is attributed to α- and β-aryl-alkyl-ether bonds breakage, followed by aromatic ring bonds breakage and finally a rupture of carbon-carbon bonds between the structural units of lignin [26].

By this way, after irradiation of samples, as presented in table 2 and table 3, cellulose component of both wood studied species slightly undergo to chain breakage when absorbed radiation dose reaches 50 kGy or higher whereas the lignin structure is less affected by gamma radiation. Some samples have presented traces of non-volatile inorganic residual components, which are derived from wood extractives.

4. CONCLUSIONS

The applied gamma radiation range dose does not promote significant alterations on mechanical and thermal behavior of the studied wood samples.

In other words, gamma rays can be used for decontamination and disinfection purposes without damaging the art work artifacts even if the treated material is once more exposed to radiation source, i.e. due to a re-infestation by biodeteriorating agents.

ACKNOWLEDGMENTS

The authors acknowledge M.Sc. Marcia Mathias Rizzo and M.Sc. Danilo Bras dos Santos for suggesting wood species, Alex Correia dos Santos for helping with TG analysis and LAMEM (Laboratório de Madeiras e Estruturas de Madeira, USP-SC) for supporting some characterization tests, as well as CNEN for fellowship, M.Sc. Yasko Kodama and Mr. Paulo de Souza Santos for samples irradiation.

REFERENCES