GAMMA TRANSITIONS IN 127Te

Wagner Fonseca Batista and Cibele Bugno Zamboni

Instituto de Pesquisas Energéticas e Nucleares, IPEN – CNEN/SP
Av. Professor Lineu Prestes 2242
05508-000 São Paulo, SP – Brazil
(0xx11) 31339968 Phone
(0xx11) 31339960 Fax
fisicawagner@usp.br

ABSTRACT

This study of the 127Te β decay was carried out by means of gamma spectroscopy measurements using high resolution Ge detector, in the region from 150 keV up to 1000 keV, aiming to get a better understanding of the 127Te nuclear structure. Several gamma transitions were confirmed when compared with those published in the last compilation. These data resulting in lower uncertainty.

1. INTRODUCTION

The low-lying levels of odd mass iodine isotopes (127-133I) can be investigated by β and γ decay of the parent tellurium isotopes. These tellurium parent isotopes have shown that properties of low-lying levels vary smoothly through the odd- mass: while the ground state in 127I is $5/2^+$ with the increasing A, the $5/2^+$ level moves up becoming the first excited state in 129I (at 27 keV), in 131I (at 150 keV) and also in 133I (304 keV). According to the last compilation by Firestone [1] several studies have been performed related to decay scheme of $^{129-133}$Te but, basically, the results of the study performed by Apt et al., in 1970 [2] established the features of the $\beta\gamma$ decay of 127Te. The absence of experimental data from 127Te decay is mainly due to the fact that 98.8% of its β^- decay populates the ground state; the remaining (~1%) populating the excited states up to 0.8 MeV. In an attempt to propose a well established β^- decay schema of 127Te motivated us to perform an investigation of excited levels in 127Te. For this purpose, singles measurements were performed using high resolution HPGe spectrometer and enriched 126Te in an attempt to identify these γ-rays of low intensity.

2. EXPERIMENTAL PROCEDURE

The radioactive sources of 127Te ($T_{1/2} \sim 9$ hs) were obtained from the 126Te (n,γ) 127Te nuclear reaction. Approximately 5 mg of enriched tellurium (98.6%) was irradiated with a thermal neutron flux of $\sim 10^{12}$ n/cm2s, for 5 minutes, in the IEA- R1 Nuclear Reactor at IPEN/CNEN-SP. Singles spectra were carried out using an ORTEC Model GEM-60195 detector (FWHM=1.89 keV at 1320 keV transition of 60Co) and an ORTEC 671 amplifier, in pile up rejection mode, coupled to a MCA ORTEC 919E connected to a PC. The background radiation as well as the escape peaks was reduced by employing the iron shield. The source-detector distance in this experimental apparatus is 12 cm. In this experimental condition several spectra were taken with standards (60Co, 109Cd, 133Ba, 137Cs and 152Eu) [3] for the purpose of the precise energy calibration of γ transitions. The sources of 133Ba and 152Eu [3]
were used for the relative efficiency calibration of the detectors. Areas of the gamma rays peaks were evaluated by using the IDF computer code [4].

3. RESULTS

The direct gamma-ray spectrum from about 150 keV up to 1000 keV was recorded over more than 530 hours of live counting. In order to positively identify the origin of the γ-rays, spectra were accumulated through four successive half-lives. The gamma rays identified in this study are shown in figure 1. The half-lives behavior of the each gamma transition observed is in agreement with the established [4].

![Gamma Ray Spectrum](image1)

Figure 1. Partial gamma ray singles spectrum of 127Te observed with HPGe.

The gamma rays energy are shown in table 1. The background contribution under each gamma transition was determined by a least-squares fit considering the regions adjacent to...
both side of the peak [5]. In this table the data from reference 2 are also included for comparison.

Table 1. Gamma ray energy from β^- decay of 127Te.

<table>
<thead>
<tr>
<th>E_γ (keV)</th>
<th>E_γ (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>present study</td>
<td>Apt et al [2]</td>
</tr>
<tr>
<td>203.355 ± 0.007</td>
<td>202.9 ± 0.1</td>
</tr>
<tr>
<td>215.645 ± 0.008</td>
<td>215.1 ± 0.1</td>
</tr>
<tr>
<td>360.811 ± 0.006</td>
<td>360.3 ± 0.1</td>
</tr>
<tr>
<td>418.396 ± 0.006</td>
<td>417.9 ± 0.1</td>
</tr>
</tbody>
</table>

4. DISCUSSION

According to table 1 the energies obtained in the present study are in agreement with data reported earlier [2].

In this study the primary reaction (n, γ) using enriched 126Te diminished the activities of the Te isotopes; in addition the gamma ray spectrum measured with a HPGe (198 cm3) of high resolution (1.87 keV), comparatively to Ge(Li) detectors used by Apt et al [2] (18 cm3 with FWHM = 2.1 and 26 cm3 with FWHM = 2.4 keV), resulting is lower uncertainty for these energies.

5. CONCLUSION

In this study gamma rays have been identified in the range of 150 keV up to 1000 keV from β^- decay of 127Te. Ours results confirm the energies previously established.

ACKNOWLEDGMENTS

The authors acknowledge the financial support from FAPESP and SEESP

REFERENCES