A rotational calibration method using thermoluminescent dosemeters for dose determination in computed tomography beams

Ana F. Maia a,b,*, Linda V.E. Caldas b

a Departamento de Física, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, CEP 49100-000, São Cristóvão – SE, Brazil
b Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, Av. Prof. Lineu Prestes, 2242, CEP 05508-000, São Paulo – SP, Brazil

Received 27 July 2007; received in revised form 8 October 2007
Available online 22 October 2007

Abstract

A procedure for calibration of thermoluminescent dosimeters, called rotational calibration, was developed to create a procedure more adequate for dose procedures used in computed tomography. Thermoluminescent dosimeters were rotated during irradiation to simulate the set-up used in dosimetric procedures in computed tomography equipment. Three commercial types of thermoluminescent dosimeters were calibrated using this methodology. The results showed that the measured values were lower when the dosimeters were irradiated with rotation than in a static geometry. Although the reading differences were not very large, they are not negligible, and they contribute to underestimating the dose.

© 2007 Elsevier B.V. All rights reserved.

PACS: 29.40.Wk

Keywords: Thermoluminescent dosimeters; Angular dependence

1. Introduction

The dosimeters used in computed tomography (CT) dosimetric procedures should not have a significant angular dependence, because the X-rays tube rotates around the table couch. The most utilized dosimeter in CT is the pencil ionization chamber, which is a cylindrical ionization chamber with a uniform response around its central axis [1]. However, thermoluminescent dosimeters (TLD) have also been used in CT beams [2–4]. In dose determination procedures with TLDs in CT beams, no references were found for correction factors utilized to compensate the effect of the angular dependence of dosimeters. Janecek and Pernicka [3] compared the dose measured in four types of different CT equipment using TL dosimeters and a CT ionization chamber, but the angular dependence of the TLDs was not considered.

The dosimetric procedure performed with TLDs consists mainly of two parts, calibration of the TLDs in a standard beam where the air kerma rate is well known, and measurements with the TLDs in the clinical beams. In the conventional calibration method, the dosimeter is static, with only one side directly facing the primary beam.

The aim of this study was to determine the effect of angular dependence in the measurements performed with commercial TLDs, and so to verify if the conventional method of TLD calibration is adequate for dose determinations in CT.

2. Materials and methods

Two methods for the determination of TLD calibration curves were compared to evaluate the influence of the
angular dependence in the TL response. The conventional method is where only one side of each dosimeter is irradiated, and a rotational method where the dosimeters were kept rotating during irradiation, simulating clinical beams.

Three types of TLDs were tested: LiF:Mg, Ti(TLD-100), CaF$_2$:Dy(TLD-200) and CaF$_2$:Mn(TLD-400) from Harshaw Chem. Co. The pellets have the dimensions of 3 mm x 3 mm x 0.9 mm. For the TL measurements a Harshaw Nuclear System, model 2000A/B, was utilized. All TLDs were evaluated with a linear heating rate of 10 °C/s, using a constant flow of high purity nitrogen of 5.0 l/min.

The thermal treatment applied to the TLDs prior to irradiation was 400 °C for 1 h [5]. For the TLD-200 a post-irradiation thermal treatment at 115 °C for 10 min was also applied to eliminate the low temperature peak (120 °C, 140 °C) contributions, which present a high thermal fading.

The irradiation support was fixed to a commercial blender and coupled to a voltage regulator, allowing rotation of the TLDs with a controlled speed of 80 rpm. This is similar to that of modern CT equipment where X-ray tube rotation time intervals are between 1 and 3 s [6,7]. Irradiation of the TLDs by the conventional method was realized with the same set-up, with no rotation. The details of the irradiation set-up are shown in Fig. 1. Four TLDs of each type were used for the measurements, positioned in a line perpendicular to the cathode–anode direction to avoid contribution of the heel effect. The results shown are those determined by considering the response of four TLDs.

Besides the calibration curves, energy dependence curves were also obtained with and without rotation. The materials were irradiated in diagnostic radiology standard beams with parameters listed in Table 1. The reference system for these qualities, which was calibrated in air kerma, was a parallel-plate ionization chamber with 1 cm3 of sensitive volume, PTW, model 77334, with a PTW electrometer, model UNIDOS 10001. This chamber was calibrated at the German primary standard laboratory, Physikalisch-Technische Bundesanstalt (PTB).

3. Results

The RQA9 standard beam was used for determining the calibration curves over a dose range from 1 to 50 mGy. The mean curve obtained in each methodology is shown in Fig. 2. For all studied materials, the TLD response in the rotation irradiation methodology was always lower than in the conventional irradiation methodology.

For the energy dependence study of the TL materials response, all standard beams in Table 1 were used. The reference beam for CT was the RQA9 quality. The energy dependence curves obtained for each type of TLD are shown in Fig. 3. The TLD response in the rotation irradiation methodology was always lower than that without rotation.

The overall uncertainties in all tests were estimated following the ISO-GUM recommendations [8]. Various parameters, such as TL reproducibility, uncertainties in the TL reader and in the irradiation time, were considered. The expanded uncertainty obtained considering a coverage factor of 2 was estimated as 7.2%.

The differences between the data in Figs. 2 and 3 are shown in Table 2. These values represent the variation in the TL intensity for each irradiation condition between the two methodologies. They were obtained from:

\[
\text{Percentage difference} = \frac{\text{TL}_{\text{direct}} - \text{TL}_{\text{rotational}}}{\text{TL}_{\text{direct}}} \times 100\%.
\]

The mean percentages ranged from 4.2% to 6.9% for the calibration curves, and from 3.3% to 4.9% for the energy dependence curves. Comparing these results with the uncertainties (7.2%), in the majority of cases the percentage differences are within the uncertainty range. Therefore, the results do not allow a definitive conclusion. However, they indicate strongly that the angular dependence of the TL response is significant. Moreover, the final measurement

Table 1

Characteristics of diagnostic radiology qualities, attenuated beams, at the Pantak/Seifert X-ray equipment, model ISOVOLT 160HS

<table>
<thead>
<tr>
<th>Radiation quality</th>
<th>Voltage (kV)</th>
<th>Half-value layer (mm Al)</th>
<th>Effective energy (keV)</th>
<th>Air kerma rate (mGy/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQA6</td>
<td>80</td>
<td>8.13</td>
<td>54.75</td>
<td>3.99</td>
</tr>
<tr>
<td>RQA7</td>
<td>90</td>
<td>9.22</td>
<td>59.70</td>
<td>4.87</td>
</tr>
<tr>
<td>RQA8</td>
<td>100</td>
<td>10.09</td>
<td>63.95</td>
<td>5.76</td>
</tr>
<tr>
<td>RQA9</td>
<td>120</td>
<td>11.39</td>
<td>71.15</td>
<td>7.93</td>
</tr>
<tr>
<td>RQA10</td>
<td>150</td>
<td>13.02</td>
<td>82.10</td>
<td>13.28</td>
</tr>
</tbody>
</table>
Fig. 2. Calibration curves obtained for different TLDs in the diagnostic radiology standard beam of RQA9, with and without rotation of the pellets.

Fig. 3. Energy dependence curves obtained for different TLDs in diagnostic radiology standard beams (absorbed dose of 10 mGy), with and without rotation of the pellets.
obtained by the conventional methodology is always underestimated, resulting in final dose values lower than the real doses.

In [3], CT dose results obtained with TLDs and an ionization chamber were compared. Although they considered the results obtained in both methods to be similar, in 82% of cases the results obtained with TLD were lower than those obtained with an ionization chamber. Besides, considering the mean value of the percentage differences for each pair of measurements, the values obtained with the TLDs were 5.6% lower than those obtained with an ionization chamber. These values are very similar to the mean percentage differences obtained in this study. Therefore, the results obtained here may explain the differences observed in [3] and they show that the TL responses are not isotropic.

4. Conclusions

TLDs can be utilized in CT dosimetric procedures, but the angular dependence must be considered in the absorbed dose evaluation. The performed tests show that if the doses are evaluated without considering the angular dependence, they are underestimated. The results obtained in this study show the need to obtain calibration curves that reflect better the clinical situation of the measurements, which can be achieved by using a simple set-up similar to that used here.

Acknowledgments

The authors acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, for the partial financial support.

References