Collagen absorption bands in heated and rehydrated dentine

Luciano Bachmann a,∗, Anderson S.L. Gomes b,1, Denise M. Zezell c,2

a Instituto de Ciências Exatas, Universidade Federal de Itajubá, Unifei, Avenida BPS, 1301 Pinheirinho, Itajubá, MG 37500-000, Brazil
b Departamento de Física and Graduate Program in Odontology, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE 50670-901, Brazil
c Centro de Lasers e Aplicações- Instituto de Pesquisas Energéticas e Nucleares, Travessa R, 400 Cidade Universitária, São Paulo, SP 05508-900, Brazil

Received 5 December 2004; received in revised form 14 March 2005; accepted 28 March 2005

Abstract

The objective of this work is identifying changes in the collagen bands in heated and rehydrated dentine. We use bovine dentine slices that were heated in oven between 100 and 300 °C. The sample hydration was conducted in sodium chloride solution at 0.9 wt.%; the spectra were acquired by a Fourier transform infrared spectrometer in the spectral range of 4000–400 cm−1. Our results show a temperature range (T ≤ 175 °C) where the dentinal collagen can be partially denatured and reverted to initial conformation; a second region (175 °C < T ≤ 225 °C) where this process occurs partially and a third region (T > 225 °C) where the collagen is denatured and no reversion is observed after rehydration. This work identifies an important characteristic that dentinal collagen can assume when the tissue is heated and rehydrated; these results indicate the denaturation temperature of dentinal collagen to be near 175–200 °C.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Dentine; Collagen; FTIR; Spectroscopy; Denaturation; Hydration

1. Introduction

The dentine vibrational spectrum (4000–400 cm−1) is mainly composed of water, hydroxyapatite and organic matrix bands [1]. The hydroxyapatite bands are originated from hydroxyl, carbonate and phosphate groups and the major organic matrix bands arise from the groups presented in the collagen molecule.

The bands in spectral region between 1400 and 1100 cm−1 are sensitive to the collagen molecular conformation and is also called “fingerprint” region, because changes in bands of this region are attributed to different conformations of a same molecule [2]. The collagen molecule consists of three polypeptide chains; each one is twisted in a self-axis with a pitch of about 9.3 Å and three amino acids units per turn [3]. Each twisted chain is twisted again with a longer pitch, at about 28.6 Å and 10 amino acids per turn. Finally, the arranged three polypeptide chains, with a twisted phase of 120° between each chain, build the collagen “super-helix”. The molecule is a rod-like structure with length of about 330 nm and diameter of about 1.35 nm. Packing a large number of molecules builds up a fibril with undefined length and diameter of about 100–200 nm.

The collagen band assignment for the region between 1400 and 1100 cm−1 was previously discussed [4,5] and the most acceptable assignments for dentine are: CH2 deformation at 1335 cm−1; C(CH2) twisting at 1315 cm−1; C–N stretching and NH deformation at 1281 cm−1; no assignment for 1234 cm−1 and CC ring stretching for 1201 cm−1. In this spectral region, the intensity of dentinal collagen bands has been reduced after irradiation with Er:YAG laser (radiation exposure less than 2 J cm−2), while at the same radiation exposure the CH covalent bonds stay unchanged [4], indicating changes in the collagen conformation after laser irradiation but the preservation of the CH covalent bonds.

1386-1425/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.saa.2005.03.025
This difference occurs because the Er:YAG laser irradiation with 2 J cm\(^{-2}\) produces a temperature rise to below 300 °C\[^7\]), therefore the temperature reached is underneath the organic material degradation maximum, which occurs in dentine at about 310 °C\[^7\]).

The Er:YAG irradiated samples at previous work\[^4\]) were stored in sodium chloride solution, and it was observed that the infrared absorption bands, between 1400 and 1100 cm\(^{-1}\), were restored after rehydration (not published). Consequently, we expect that changes in collagen structure, which occurs with heating, can be reverted to natural conformation after rehydration. Therefore, the objective of this work is to identify the bands reduction after heating (\(T < 300 °C\)) and the reversion after rehydration, thus determining at which temperature range this reversion can occur.

2. Materials and methods

Bovine incisors were selected for this work; the teeth were kept immediately after extraction in sodium chloride (NaCl) solution at 0.9 wt.% of concentration. The teeth were free of caries, pigments or other dental anomalies. The roots were cut in slices of about 0.5 mm using a diamond blade system and then sanded down to thickness about 100 \(\mu\)m. Nine slices were prepared and each one will be heated to a specific temperature value.

The spectral acquisition was conducted in a Fourier transform infrared spectrometer (MB-Series, Bomem Hartmann & Braun, Quebec, Canada). The spectral range of 4000–400 cm\(^{-1}\) (2.5–25 μm) was analysed and registered in the transmission mode with resolution of 2 cm\(^{-1}\). A source was only the evaluation of dentine organic matrix, we registered the spectral region between 1400 and 1100 cm\(^{-1}\). The area under the bands was determined after subtracting a straight line (background elimination). The graphics of normalized area were composing dividing the area of heated sample by the area of natural sample.

The samples were heated in an oven by heat treatment temperatures (HTTs) between 100 and 300 °C at steps of 25 °C. A spectrum of each sample was recorded before heating. After heating (30 min) the samples were cooled down at ambient temperature for \(\sim 15\) min and then analysed in the spectrometer. After the described measurements, the samples were rehydrated in NaCl solution and the spectrum of each sample was recorded again after 1–5 days of hydration.

3. Results

In Fig. 1, it is possible to observe the region between 1370 and 1150 cm\(^{-1}\) of the spectrum of natural dentine with the bands that were monitored after heating and hydrating: 1201, 1234, 1281 and 1335 cm\(^{-1}\). The band in 1315 cm\(^{-1}\) was not monitored because of its weak intensity. After heating the samples at 100 °C, a decrease in the intensities of the monitored absorption bands was observed. Fig. 2 shows that the observed decrease in intensity is strongly temperature dependent, reaching almost zero after 300 °C.

Shown in Figs. 3–8 are the normalized areas monitored after different HTTs and hydrating during 5 days. After hydration, the dentine bands can be classified as total reverted in samples heated with temperatures equal or below 175 °C; partially reverted in samples heated at temperatures between 200 and 225 °C; and non-reverted in samples heated with temperature equal or above 250 °C.

In the samples heated at 100 °C (Fig. 3), 125 °C (not shown), 150 °C (Fig. 4) and 175 °C (not shown) the intensities of the bands are reduced, by different proportion, and totally reverted by hydration to values near those observed before thermal treatment. The results for samples heated at 125 and 175 °C are not shown since they present the same behaviour as those heated at 100 and 150 °C.

Fig. 1. Infrared absorption spectrum of natural dentine between 1370 and 1150 cm\(^{-1}\), arrows indicate the absorption bands assigned to the organic matrix. The band at 1315 cm\(^{-1}\) was not monitored because it is very weak and difficult to identify after heating.

Fig. 2. Normalized area of the monitored bands as a function of the temperature of the thermal treatment (100–300 °C). It is possible to observe a linear behaviour on the area reduction of the monitored bands, reaching to values near zero after heating the tissue at 300 °C.
Fig. 3. Normalized area of dentine bands before heating, after heating at 100 °C (30 min) and after hydration in NaCl solution during 5 days. The area is reduced up to 50% of the initial observed area and after hydration all observed bands increase and return to similar values to those observed for unheated dentine.

Fig. 4. Normalized area of dentine bands before heating, after heating at 150 °C (30 min) and after hydration in NaCl solution during 5 days. As described for the sample heated at 100 °C, at 150 °C the bands area are also reduced and after hydration returns to initial values. The same behaviour is observed for the sample heated at 125 and 175 °C (not shown).

A partial reversion to values before thermal treatment is observed in samples heated at 200 °C (Fig. 5) and 225 °C (Fig. 6). For these two HTTs, the intensity of the bands are reduced and even after 5 days of hydration they do not return to the initial values observed in untreated samples. At higher HTTs, only an accentuated reduction in the intensity of the monitored bands is observed, which stay constant up to the fifth day of hydration. Figs. 7 and 8 show the dentine samples heated at 250 and 275 °C, respectively; the sample heated at 300 °C shows a similar behaviour and is not presented.

4. Discussion

The intensities of the collagen bands decrease about 25–50% when the tissue is heated to 100 °C. The band inten-
sity at 1335 cm$^{-1}$ (CH$_2$ deformation) reduces 25% and the band intensity at 1281 cm$^{-1}$ (CN stretching and NH deformation) reduces 50%, while the other bands intensities show percentage reductions between 25 and 50% when the tissue is heated to 100 °C. Increasing the HTT we observe a progressive reduction of the intensities of all collagen bands, reaching nearly zero when the tissue is heated at 300 °C. The sample heated at 250 °C shows the same behaviour.

The tissue heated to a temperature below 175 °C has its structure reversion is also partial. For HTTs between 175 and 225 °C the restitution of hydrogen bonds is probably partial and the collagen structure reversion is also partial.

Type I collagen molecules in soft tissues denature irreversibly at 43-60 °C [10], whereas the calcified collagen molecules in bone break down at approximately 150 °C [11]. Differences between the properties of dentinal or bone collagen and soft tissue collagen are attributed to differences in terms of an additional level of stabilisation in the structure [9,12]. Therefore, it is possible to observe collagen absorption bands in samples of heated dentine up to 175 °C. As the collagen molecules are stable at the temperature range below 175 °C, we can identify 175–200 °C as the denaturation temperature of the dentinal collagen. This value is a little higher than the denaturation temperature of the bone collagen, which is about 150 °C [11]. Considering that the dentinal collagen has higher cross-linkage than bone collagen [12], the higher observed denaturation temperature for dentine is in agreement, i.e., the higher cross-links in dentine will increase the collagen stabilisation and as a consequence the denaturation temperature will also increase.

In the present work was determined a temperature range (T \leq 175 °C) where the dentinal collagen can be partial denatured and reverted to initial conformation; and a second region (175 °C < T \leq 225 °C) where this process occurs partially. This work identifies an important characteristic that dentinal collagen can assume when the tissue is heated; the observed characteristics of the collagen molecule can be used in favour to clinical therapy.

Acknowledgements

This work was supported by grants from FAPESP, CNPq and CAPES.

References